
1. Introduction
Paleomagnetism is concerned with attempting to estimate properties of the ancient geomagnetic field from 
magnetic records preserved in rocks. This involves laboratory measurements of magnetization directions recorded 
by rocks and statistical analyses of those directions. Two geomagnetic properties of particular interest that can be 
estimated from these paleomagnetic directional data are:

 • The position of the time-averaged (≳10 4–10 5 a) ancient geomagnetic pole (also known as a paleopole) that 
corresponds to the Earth's spin axis according to the geocentric axial dipole hypothesis (Creer et al., 1954).

 • The paleosecular variation of the field, which is associated with the shorter-term (≲10 4–10 5 a) time-varying 
position of the geomagnetic pole.

Despite the importance of these two quantities, there has been little exploration of the best sampling practices 
with which to derive estimates of them. This has resulted in practices that vary according to the traditions of 
different laboratories; that is, the community largely relies on conventional wisdom.

Abstract Sampling strategies used in paleomagnetic studies play a crucial role in dictating the accuracy of 
our estimates of properties of the ancient geomagnetic field. However, there has been little quantitative analysis 
of optimal paleomagnetic sampling strategies and the community has instead defaulted to traditional practices 
that vary between laboratories. In this paper, we quantitatively evaluate the accuracy of alternative paleomagnetic 
sampling strategies through numerical experiments and an associated analytical framework. Our findings 
demonstrate a strong correspondence between the accuracy of an estimated paleopole position and the number of 
sites or independent readings of the time-varying paleomagnetic field, whereas larger numbers of in-site samples 
have a dwindling effect. This remains true even when a large proportion of the sample directions are spurious. This 
approach can be readily achieved in sedimentary sequences by distributing samples stratigraphically, considering 
each sample as an individual site. However, where the number of potential independent sites is inherently limited 
the collection of additional in-site samples can improve the accuracy of the paleopole estimate (although with 
diminishing returns with increasing samples per site). Where an estimate of the magnitude of paleosecular variation 
is sought, multiple in-site samples should be taken, but the optimal number is dependent on the expected fraction 
of outliers. The use of filters based on angular distance helps the accuracy of paleopole estimation, but leads to 
inaccurate estimates of paleosecular variation. We provide both analytical formulas and a series of interactive 
Jupyter notebooks allowing optimal sampling strategies to be developed from user-informed expectations.

Plain Language Summary Earth's magnetic field can be preserved in rocks when they form. 
Through studying these magnetic records using the tools of paleomagnetism, scientists can learn about how 
Earth's magnetic field has changed through time and how tectonic plates have moved. This study is about the 
best ways to design sampling approaches to gain these insights using statistical quantification. Traditional 
protocols emphasize the collection of numerous samples from units that record the field at a given instant 
in time. Such units are referred to as sites. Through simulating data, we develop tools for evaluating trade-
offs between collecting more sites and more samples per site. Our results show that strategies that maximize 
collecting more sites, even if fewer samples are taken at each site, leads to more accurate estimates even 
in the presence of spurious observations. While there is a benefit to more samples per site, particularly for 
studies seeking to estimate the variability of the ancient field, such sampling has diminishing returns relative 
to maximizing the number of sites. We provide formulas and interactive computational resources to help the 
community to make informed decisions about the best way to gather data.
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In the hierarchical framework of paleomagnetic studies, a site should correspond to a unit of rock with a common 
age and direction of magnetization (McElhinny & McFadden, 2000; Tauxe, 2010). Note that in some contribu-
tions a site is defined more loosely as a small area or stratigraphic interval from which samples are collected 
which is not the definition that we use here. In our preferred definition, each site is interpreted to be a spot 
recording of the time-varying geomagnetic field. In the case of an igneous rock, a site could be an individual lava 
flow or intrusion, whereas for a sedimentary rock, a site should ideally comprise a single depositional event. In 
practice, a sedimentary site typically corresponds to a single stratigraphic horizon that is the height of a stand-
ard paleomagnetic sample, usually about 2.5 cm. Notice that when sedimentation rates are low, an individual 
samples may partially time average the field. To move up the hierarchy, a collection of paleomagnetic samples 
from a given site are averaged and the site mean is transformed from a direction with an associated declination 
and inclination to pole space with an associated latitude and longitude, where the mean is referred to as a virtual 
geomagnetic pole (VGP). Following the definition of a site, each VGP ideally represents an independent estimate 
of the position of the ancient geomagnetic pole at an instant in time. Estimates of paleosecular variation of the 
ancient geomagnetic field prior to 10 Ma can be made from populations of VGPs by determining their angular 
dispersion—most typically applied to collections of igneous sites of a similar age (e.g., model G; McFadden 
et al., 1988). To determine a mean paleomagnetic pole position, a group of similarly aged VGPs are averaged 
to a Fisher mean paleopole that is taken as the best estimate of the true position of the ancient geographic pole 
relative to the observation point.

Regardless of whether we seek to discern the statistical properties of the time-averaged pole position or geomag-
netic secular variation, our estimates will include error. Paleomagnetic errors come from a variety of sources 
which can include orientation errors both in the field and the laboratory; measurement errors; and the imperfect 
isolation of the magnetization of interest from secondary magnetic overprints. The frequent occurrence of imper-
fect magnetization acquisition or the inability to isolate primary components often results in a sample collection 
being contaminated by outliers. Orientation and measurement errors are generally assumed to be randomly unbi-
ased (non-systematic) and so can be mitigated through the collection, measurement and directional averaging of 
multiple samples within a site. However, given finite resources, the collection of additional samples per site will 
come at the cost of a lower number of sites in many settings. A relevant question is thus: how should we distribute 
our sampling to minimize uncertainty on the property we seek to estimate? Is it better to take a few sites with 
many samples? Or many sites with fewer samples? How might the recommended strategy change depending 
on the objective (in estimating the location of the paleopole vs. the dispersion of VGPs) or the fidelity of the 
magnetic record?

Some notions concerning sampling have become entrenched in the paleomagnetic literature. For example, many 
workers seek to collect six to eight samples per site (Butler, 1992), although the rationale for this range is not 
entirely clear. Opdyke and Channell (1996) suggest that at least three samples per site be collected where determi-
nations of polarity are important, whereas to reliably estimate the dispersion of sample directions within a site, a 
minimum of four (Cromwell et al., 2018) or five (Tauxe et al., 2003) samples per site has been deemed necessary. 
Having a more significant number of samples within the site provides the benefit of being able to apply data 
filters based on within-site scatter. However, Gerritsen et al. (2022) have found empirically that collecting and 
averaging multiple samples per site only results in a modest enhancement of the overall accuracy of the paleopole. 
Thus, where the objective is to estimate the position of a paleopole, Gerritsen et al. (2022) suggested that it is 
most beneficial to maximize the number of sites, and so the collection of additional single-sample sites should 
be preferred over the collection of multiple samples from fewer sites. Nevertheless, a statistical and quantitative 
evaluation of alternative strategies has not yet been conducted.

Here we explore how the distribution of samples across sites affects the performance in the estimation of the 
paleopole position and the dispersion of VGPs, and how the varying influence of outliers dictates the optimal 
strategy to best estimate these parameters. We also derive a set of equations that can enable quantitative sampling 
strategy recommendations based on specified parameters informed by user expectations.

2. Mathematical Setup
Consider the problem of estimating a paleomagnetic pole μ0 for some given interval of time, where μ0 is a 
three-dimension vector contained in the unit sphere. Observations consist of a collection of a total of n samples 
distributed among N sites. Because the geomagnetic field is constantly varying around a mean configuration, 
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each one of the VGPs per site, denoted by μi with i = 1, 2, …, N, is going to differ from the time-averaged 
paleomagnetic pole μ0. A fundamental assumption in paleomagnetic research is that this secular variation of the 
geomagnetic field can be effectively estimated through averaging of a sufficiently high number of independent 
and temporally distributed VGPs. We now seek to evaluate how our choices of n and N will affect our estimation 
of μ0, as well as how we distribute the n samples among the N sites.

2.1. Data Generating Model

We define the following data generating model. First, we consider a set with a total of N VGPs sampled from 
a statistical model of secular variation. Examples of these models include the Gaussian process type model 
(Constable & Parker, 1988; Tauxe & Kent, 2004) and model G (McFadden et al., 1988). In this contribution, 
we use model G which captures latitudinal variation in VGP scatter, and considers a mean geocentric axial 
and dipolar (GAD) field. Then, given a GAD mean direction μ0, we sample a series of VGPs μ1, μ2, …, μN 
according  to

𝜇𝜇𝑖𝑖 ∼ SV(𝜇𝜇0, 𝜅𝜅𝑏𝑏) 𝑖𝑖 = 1, 2, . . . , 𝑁𝑁𝑁 (1)

The sampling procedure depends on the mean direction μ0 and the precision parameter κb that will depend on 
the secular variation model used. In this study, we adopt the mild assumption that VGP distributions are circu-
larly symmetric (Tauxe & Kent,  2004) and can be sampled from a Fisher distribution (Deenen et  al.,  2011; 
Fisher, 1953), whose dispersion Sb, according to model G (McFadden et al., 1988), depends on the sampling 
latitude λ through the following formula

𝑆𝑆𝑏𝑏(𝜆𝜆)
2
= 𝑎𝑎2 + 𝑏𝑏2𝜆𝜆2, (2)

with a and b two empirical coefficients, recently calculated as 𝐴𝐴 𝐴𝐴 = 11.3◦
+1.3◦

−1.1◦
 and 𝐴𝐴 𝐴𝐴 = 0.27+0.04

−0.08
 by Doubrovine 

et al. (2019). At population level, there is a one-to-one relationship between Sb and the value of κb we use to sample 
from the Fisher distribution. This relationship can be found numerically with an arbitrary level of precision. Then, 
VGPs can be sampled according to a Fisher distribution with mean direction μ0 and dispersion parameter κb(λ).

In the following, we use the supraindex * to denote variables in directional space (inclination-declination). Thus, 
μi refers to any given VGP (geographic coordinates) and 𝐴𝐴 𝐴𝐴∗

𝑖𝑖
 refers to its corresponding direction in inclination 

and declination space according to the dipole formula. Note that this transformation between pole and directional 
space depends on the latitude and longitude of the site.

Now, we assume that the ith-site has ni individual directions that follow a Fisher distribution

𝑥𝑥∗
𝑖𝑖𝑖𝑖 ∼ Fisher

(

𝜇𝜇∗
𝑖𝑖 , 𝜅𝜅𝑖𝑖

)

with probability 1 − 𝑝𝑝outlier and

𝑥𝑥∗
𝑖𝑖𝑖𝑖 ∼ Unif otherwise, for 𝑖𝑖 = 1, 2, . . . , 𝑛𝑛𝑖𝑖,

 (3)

with xij the jth-direction of the ith-site; κi the dispersion parameters per site; and Unif represents the uniform 
distribution on the sphere. The parameter poutlier has been added to quantify the effect of outliers in the sampling 
process. With probability 1 − poutlier we are going to observe a true sample, while with probability poutlier our 
sample will be corrupted and instead we will observe a spurious direction, modeled by a uniform distribution on 
the sphere where no information is provided about the true orientation of the field. For cases where we do not 
want to consider the effect of outliers in the sampling process, we set poutlier = 0. Also, for cases where the number 
of samples and dispersion parameter are the same for all the sites, we will use n0 and κw to refer to any of the ni 
and κi, respectively. The parameters used in the model are summarized in Table 1.

2.2. Estimation of the Paleopole Direction

We can estimate the true pole location μ0 by computing the Fisher mean of the VGPs estimated from each site, 
that is,

�̂�𝜇0 =
1

𝑅𝑅0

𝑁𝑁
∑

𝑖𝑖=1

�̂�𝜇𝑖𝑖 𝑅𝑅0 =

‖

‖

‖

‖

‖

‖

𝑁𝑁
∑

𝑖𝑖=1

�̂�𝜇𝑖𝑖

‖

‖

‖

‖

‖

‖

, (4)
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where R0 is the length of the resultant vector with ‖⋅‖ denoting the Euclidean norm; and 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is the sample mean per 
site, which results from transforming to pole space the estimate of the pole in directional space,

�̂�𝜇∗
𝑖𝑖 =

1

𝑅𝑅𝑖𝑖

𝑛𝑛𝑖𝑖
∑

𝑗𝑗=1

𝑥𝑥∗
𝑖𝑖𝑗𝑗 𝑅𝑅𝑖𝑖 =

‖

‖

‖

‖

‖

‖

𝑛𝑛𝑖𝑖
∑

𝑗𝑗=1

𝑥𝑥∗
𝑖𝑖𝑗𝑗

‖

‖

‖

‖

‖

‖

. (5)

The overall goal of this estimation procedure is to get a value for 𝐴𝐴 𝐴𝐴𝐴0 as close as possible to the ground truth μ0.
We assess the accuracy of the pole estimate across simulations by computing the root-mean-square error 
(RMSE)  as

Err�̂�𝜇0 =

√

√

√

√
1

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

angle
(

�̂�𝜇
(𝑚𝑚)

0
, 𝜇𝜇0

)2
, (6)

where 𝐴𝐴 angle
(

�̂�𝜇
(𝑚𝑚)

0
, 𝜇𝜇0

)

= (180◦ ⁄𝜋𝜋)cos−1
(

𝜇𝜇𝑇𝑇

0
�̂�𝜇
(𝑚𝑚)

0

)

 is the angular distance in degrees between the true pole μ0 and 
each one of the simulated estimations 𝐴𝐴 𝐴𝐴𝐴

(𝑚𝑚)

0
 , where M is the total number of simulations.

2.3. Estimation of the VGP Scatter

Long-term assessment of the paleomagnetic secular variation of the geomagnetic field relies on the VGPs disper-
sion Sb instead of their mean. The observed global dispersion S is estimated as Cox (1970)

�̂�𝑆
2
=

1

𝑁𝑁 − 1

𝑁𝑁
∑

𝑖𝑖=1

angle(�̂�𝜇𝑖𝑖, �̂�𝜇0)
2
. (7)

The global dispersion S 2 is a combination of the dispersion between VGPs Sb and that arising from the disper-
sion among the samples within the site Sw (McFadden et al., 1991). We assume that the latter arises purely from 
random errors associated with orientation, measurement and analytical errors, whereas the former is an unknown, 
latitude-dependent parameter of the time-averaged geomagnetic field. In order to estimate Sb, we first need to 
extract the within-site dispersion from the global dispersion of the VGPs, that is

�̂�𝑆2

𝑏𝑏
= �̂�𝑆

2
− �̂�𝑆2

𝑤𝑤, (8)

where the estimated within-site dispersion 𝐴𝐴 �̂�𝑆𝑤𝑤 is computed in directional space following McFadden et al. (1991) 
and Doubrovine et al. (2019).

�̂�𝑆2
𝑤𝑤 =

1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

�̂�𝑆2
𝑤𝑤𝑖𝑖

𝑛𝑛𝑖𝑖
 (9)

�̂�𝑆2
𝑤𝑤𝑤𝑤 = 2

(

180◦

𝜋𝜋

)2 𝑇𝑇 (𝜆𝜆)

�̂�𝑘𝑤𝑤𝑤𝑤

 (10)

Parameter Range Description

N ≥1 Total number of sites.

n0 ≥1 Number of samples per site. We will assume n0 = n1 = … = nN and denote 
n = Nn0 the total number of samples.

κw [0, ∞) Precision parameter of the Fisher distribution for a given site, where kw = 0 
results in a uniform distribution on a sphere and kw → ∞ is a singular point.

κb [0, ∞) Precision parameter of the Fisher distribution between sites. For the model G, 
this is directly determined by λ.

𝐴𝐴 𝐴𝐴 [0°, 90°] Paleolatitude.

poutlier [0,1] Outlier rate where 0 is no outliers and 1 is all samples are outliers drawn from 
a uniform distribution.

Table 1 
Parameters Used for the Sampling of Poles
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�̂�𝑘𝑤𝑤𝑤𝑤 =
𝑛𝑛𝑤𝑤 − 1

𝑛𝑛𝑤𝑤 − 𝑅𝑅𝑤𝑤

, (11)

with 𝐴𝐴 𝐴𝐴 (𝜆𝜆) =
1

8

(

5 + 18sin
2
𝜆𝜆 + 9sin

4
𝜆𝜆
)

 the latitude correction introduced in Cox  (1970); and Ri the resultant 
vector length defined in Equation 5. Notice that the within-site dispersion will lead to unrealistic estimates of the 
between-site dispersion in cases where ni is small, ni = 1 being the extreme case where the within-site dispersion 
cannot be estimated; that is, we cannot disentangle the contribution of the within-site and between-site dispersion. 
For cases where ni = 1, we set 𝐴𝐴 �̂�𝑆𝑤𝑤 = 0 , that is, the within site dispersion is zero since it cannot be estimated from 
these series of equations.

3. Numerical Results
In this section, we present the results of numerical simulations that explore how different sampling strategies 
affect the estimation of paleopole position μ0 and VGP scatter Sb. These simulations implement the data gener-
ating model described in Section 2.1 to draw samples of site directions and associated directions within a given 
site. For the different numerical experiments, we apply varied choices for the model parameters (Table 1) and we 
respectively compute the mean pole position 𝐴𝐴 𝐴𝐴𝐴0 and VGP scatter 𝐴𝐴 �̂�𝑆𝑏𝑏 . These simulations enable us to assess what 
differences in sampling strategy yield estimates of the parameters of interest that are closer to the true value. 
We compare the results of these estimates for different choices of filters and compare them to determine which 
sampling strategy and method yields the highest accuracy.

3.1. Trade-Off Between Number of Sites and Number of Samples per Site

The top panel in Figure 1 shows the accuracy of the mean 𝐴𝐴 𝐴𝐴𝐴0 (Equation 6) as a function of the number of sites 
N and the number of samples per site n0 in the absence of outliers (poutlier = 0). As the number of sites increases 
(moving up the y-axis), the total error reduces. The mean error is also reduced if we increase the number of 
samples per site while keeping the total number of sites fixed. However, in the latter case we see that the improve-
ment resulting from increasing the number of samples per site is small relative to increasing the number of sites 
and saturates for small numbers of n0 (see black contour lines).

In a scenario with unlimited resources to collect and analyze paleomagnetic samples, one could seek to maximize 
both the number of sites (N) and the number of samples per site (n0). However, in the context of finite resources, 
it is interesting to consider what happens when we keep fixed the total number of samples n = n0N but change 
how these samples are partitioned between number of sites (N) and number of samples per site (n0). As visualized 
with the white dotted curves in Figure 1 that follow a fixed total number of samples, we see that smaller errors are 
associated with sampling strategies that prioritize the acquisition of additional sites over the collection of addi-
tional samples per site. The same behavior is exposed when we plot the error as a function of the total number of 
samples n and for different values of n0 (Figures 2a and 2b). For all choices of samples per site n0, the net error 
decreases at rate 𝐴𝐴 1∕

√

𝑛𝑛 , with the absolute value of the error being additionally affected by n0. We quantify the 
improvement in accuracy due to an increase in the number of samples for different number of samples per site 
(Figures 2c and 2d). Even by keeping fixed the number of sites and increasing n0 (and, consequently, increasing 
the total number of samples), the improvement in accuracy is minimal once n0 ≥ 3.

The effect of varied numbers for N and n0 on the accuracy of estimates of VGP scatter (between-site dispersion 
Sb) is shown in Figure 1. As with estimating pole position, we observe similar behavior for estimating VGP 
scatter where, given a fixed total number of samples, there is smaller error when the number of sites is higher. 
However, the benefit of increasing the number of samples per site on reducing the root mean square error between 

𝐴𝐴 �̂�𝑆𝑏𝑏 and the true VGP scatter Sb is more pronounced. Notice that for n0 = 1, this error is large due to the inability 
to estimate  the within-site dispersion. However, for n0 ≥ 3 the error stabilizes and we observe the same behavior 
as before: the acquisition of more sites over more samples per site leads to better estimation of the VGP scatter 
assuming n0 ≥ 3.

3.2. Sampling Strategy in the Presence of Outliers

In the previous section, we concluded that the number of sites N is mostly what determines the accuracy of 
the estimated position of the paleopole. However, an argument for collecting more samples per site is the 
ability to detect and filter out spurious sample directions. A more fair comparison then is to compare two 
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Figure 1. Root mean square error (RMSE) in degrees between site mean poles and the true GAD pole (top panel) and between-site VGP dispersion (bottom panel) 
as a function of different combinations of the total number of sites N and the number of samples per site n0. For this diagram, we use a paleolatitude of 30° (κb ≈ 35), 
poutlier = 0, and κw = 50. The white dashed lines represent isolines where the total number of samples n is constant, and the black lines represent isolines with constant 
net mean error angle. Each point-wise estimate of the mean error (i.e., each box) is based on the results of 10,000 simulations. While these simulations represent secular 
variation using model G, similar results emerge from using the TK03 model (Tauxe & Kent, 2004).
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different strategies for estimating the paleopole while taking the possible occurrence of such outliers into 
account. When using a small number of samples per site n0, outlier detection at the site level may be diffi-
cult, or directly impossible where n0 = 1 given that within site consistency cannot be evaluated. However, it 
is possible to implement methods to filter VGPs that are statistically significantly apart from the mean (e.g., 
the paleopole) using an iterative cut-off (Vandamme,  1994). We compare this first strategy (n0  =  1 with 
Vandamme's iterative cut-off applied on the estimated population of VGPs) with the optimistic case where we 
collect more samples per site and are able to identify and filter all the outliers directly at the site level. The 
latter case provides a lower bound on the most optimistic error when using any outlier detection criteria at 
site level. For this second strategy, no outliers are included in the calculation of the final estimated pole 𝐴𝐴 𝐴𝐴𝐴0 . 
This means that the effective number of samples used to estimate μ0 will be less than n, but since the samples 
removed are spurious directions, we expect the estimate of the paleopole will be more accurate than if we 
included all the samples in the calculation. We also show the results of the first method without using any 
outlier filter whatsoever.

Figure 2. (a) Root mean square error (RMSE) angle of the computed mean pole as a function of the total number of samples n for different values of samples per site 
n0 where an increase in samples per site results in a decrease in the number of sites. (b) Displays the same values on a logarithmic scale, making explicit the 𝐴𝐴 1∕

√

𝑛𝑛 
decay of the error, independent of the value of n0. (c) RMSE as a function of the total number of sites N for different values of n0 where an increase in n0 increases the 
total number of samples, also in (d) logarithmic scale. For all the figures, we set λ = 30°, κw = 50, and poutlier = 0. The dot-dashed lines in all the plots represent the 
theoretical approximation (see Section 4).
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Histograms in Figures 3a–3c show the distribution of the angles between μ0 (true GAD pole) and 𝐴𝐴 𝐴𝐴𝐴0 (estimated 
pole) for the two sampling strategies and with 10%, 40%, and 60% outlier rate, respectively. Even in the presence 
of outliers, using n0 = 1 gives lower angular errors than when using n0 = 5 until the proportion of outliers poutlier 
increases by a significant amount. We illustrate this by showing in Figure 3d the mean of these two errors as a 
function of the outlier rate poutlier. Until the proportion of outliers reaches a critical point of approximately 55%, 
having n0 = 1 but being able to sample more sites N still out-performs the case where n0 = 5 and all outliers 
are removed. Figure 3e shows this critical value of poutlier for different site latitudes and within-site dispersion, 
showing that we need to have more than 40% outliers before the second strategy out-performs the n0 = 1 strategy. 
Figure 3f further shows this critical value in the case where no filter is used for n0 = 1. It is noteworthy that despite 
the small variance, this critical value of poutlier grows as a function of site latitude (increasing Sb) and remains 
relatively similar as a function of within-site dispersion.

A wider comparison of these methods for a range of samples per site n0 is provided in Figure 4. Here again we can 
observe that for a fixed number of total samples the scenario with n0 = 1 leads to better estimation of the true pole until 
the proportion of outliers becomes very high. On the right side of the panel we can also observe the improvement in 
accuracy when we fix the number of sites N and we increase the number of samples per site and thus the total number 
of samples. In agreement with the results shown in Figure 2, we observe that the improvement due to an increase in 
the number of samples per site n0 by keeping N fixed is small compared to a change in the overall sampling strategy.

Figure 3. Comparison between two different sampling strategies to determine a mean paleomagnetic pole position in the presence of outliers for a fixed number of total 
samples (n = 100). The red histograms and curve are strategy 1 where we have one sample per site (n0 = 1), one hundred sites (N = 100) and we use the Vandamme 
filter. The blue histograms and curve are strategy 2 where n0 = 5, (N = 20) and we filter all the outliers (perfect detection algorithm) for (a) poutlier = 0.10 (10% of 
sample directions are outliers); (b) poutlier = 0.40; and (c) poutlier = 0.60. Here κw = 66 is such that the angular dispersion within site is 10°, and λ = 30°. The gray line 
denotes the case in which we sample for n0 = 1 but we do not use any outlier detection method. (d) As we increase the number of outliers poutlier, the error increases 
differently depending on whether we can detect and filter outliers or not. The intersection of the two errors corresponds to the value of poutlier whereupon there is a 
crossover in the efficacy of the two methods. The shaded envelopes around the solid lines correspond to the 25 and 75 percentile bands. (e) Value of the intersection 
between the mean errors for strategies 1 and 2 (panel d) for different values of latitude λ and within-site dispersion kw. (f) Same as in (e) but comparing n0 = 5 with the 
scenario of no outlier detection.
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Figure 4. Boxplot of the angular error between estimated and true GAD pole for different sampling strategies (number of samples per site, and total number of sites in 
parenthesis) for (a), (b) poutlier = 0.10, (c), (d) poutlier = 0.40 and (e), (f) poutlier = 0.60. The left column corresponds to the case where the total number of samples is fixed 
around n ≈ 100, while the right column is the case with fixed number of sites (N = 100) and a variable total number of samples. Following the convention in Figure 3, 
the red diagrams correspond to n0 = 1 using the Vandamme filter; the blue to n0 = 5 with perfect outlier detection algorithm; and the gray boxes correspond to n0 = 1 
with no outlier detection been applied. For all simulations shown, kw = 50 and λ = 30°.
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We conducted the same analysis for estimating the VGP scatter Sb and its associated error. Figure 5 shows the 
signed percentage error 𝐴𝐴 100% ⋅

(

�̂�𝑆𝑏𝑏 − 𝑆𝑆𝑏𝑏

)

∕𝑆𝑆𝑏𝑏 for different choices of n0. When n0 = 1, all methods overestimate 
the real VGP scatter due to the lack of estimates of the within site dispersion 𝐴𝐴 𝐴𝐴2

𝑤𝑤 (Equation 9). On the other hand, 

Figure 5. Boxplot of the relative error when estimating the between-site dispersion Sb, that is, 𝐴𝐴 100%
(

�̂�𝑆𝑏𝑏 − 𝑆𝑆𝑏𝑏

)

∕𝑆𝑆𝑏𝑏 , where 𝐴𝐴 �̂�𝑆𝑏𝑏 is estimated as it was explained in 
Section 2.3, and Sb is the true VGP scatter. Parameters, color references and panel arrangements are the same than in Figure 4, while here the choice of outliers rates is 
(a), (b) poutlier = 0, (c), (d) poutlier = 0.20, and (e), (f) poutlier = 0.40.
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Sb tends to be underestimated when we use the Vandamme (1994) filter, since the cut-off of outliers reduces 
the total dispersion of the VGPs (Equation 7). As we increase the number of outliers, we observe a significant 
deterioration of the VGP scatter estimation due to the inability to filter outliers. This behavior is rather different 
to what we observed for paleopole estimation, where the estimation is more robust to outliers. However, after 
reaching a minimum required value of samples per site (around n0 = 3), the accuracy only minimally improves 
by adding more samples per site. In the case where no outliers are present, we are back to the case in Figure 1 
where we observed that, for the same budget of total samples n, a larger value of sites N leads to more accurate 
estimates as long as n0 ≥ 3.

4. Theoretical Results
We can quantify the trade-offs between the different model parameters introduced in the previous section by 
theoretically deriving approximations for the dispersion parameter of the distribution of the estimated pole 𝐴𝐴 𝐴𝐴𝐴0 . 
This procedure works by finding the effective precision parameter κeff of a Fisher distribution that minimizes 
the Kullback-Leibler divergence with respect to the actual dispersion of 𝐴𝐴 𝐴𝐴𝐴0 (Heslop & Roberts,  2020; Kurz 
et  al., 2016). As derived in Kurz et  al.  (2016), this approach is equivalent to finding the mean direction and 
dispersion parameter that matches the resultant vector length of the target distribution. In Appendix A, we have 
provided the essential definitions and theoretical derivations used in our analysis. Using this method, we can 
derive the following approximation for the dispersion of the estimated 𝐴𝐴 𝐴𝐴𝐴0 :

�̂�𝜇0 ≈ Fisher(𝜇𝜇0, 𝜅𝜅eff), 𝜅𝜅eff =
𝑁𝑁𝜅𝜅𝑏𝑏

1 +
𝜅𝜅𝑏𝑏

𝑛𝑛0 (1−𝑝𝑝outlier) 𝜅𝜅𝑤𝑤 𝑇𝑇 (𝜆𝜆)

. (12)

The effective dispersion parameter κeff is a function of all the parameters in the model. Under the assumptions 
of model G (McFadden et al., 1988), we have κb = κb(λ) is a function of the paleolatitude according to Equa-
tion 2. However, this result holds for other choices of κb where the Fisher approximation of the VGP scatter is 
appropriate.

In the case where no outliers are included (poutlier = 0), based on the approximated relationship between angular 
dispersion S and κ we can approximate the angular error 𝐴𝐴 Err�̂�𝜇0 introduced in Equation 6 as

Err�̂�𝜇0 ≈
81◦
√

𝑁𝑁

√

1

𝜅𝜅𝑏𝑏

+
1

𝑛𝑛0𝜅𝜅1𝑇𝑇 (𝜆𝜆)
. (13)

This equation allows us to quantify the amount of error associated with different choices of n0. Comparing this 
theoretical approximation with the simulations (Figures 1 and 2) reveals relative error of around 1% between 
simulation and theory.

From the theoretical expression for 𝐴𝐴 Err�̂�𝜇0 we can see that as n0 increases, the improvement in accuracy to the 
final error becomes rather minimal since the coefficient 1/n0κ1T(λ) is dominated by 1/κb. Surprisingly, this 
limit is reached for very small values of n0, which shows the small amount of improvement that increasing n0 
adds to the final error, especially when we compare this with the decay of the error given by the factor 𝐴𝐴 1∕

√

𝑁𝑁  . 
No matter the choice of n0, the error goes to zero as N increases. On the other hand, no matter how large n0 
becomes, the overall error will never be lower than 𝐴𝐴 81◦∕

√

𝑁𝑁𝑁𝑁𝑏𝑏 , N being the quantity that controls the overall 
error most.

The approximation with outliers is accurate for values of which n0(1 − poutlier) is strictly larger than one. For the 
case of n0 = 1, a more accurate approximation is given by

𝜌𝜌−1

(

(1 − 𝑝𝑝outlier)
𝑁𝑁𝑁𝑁𝑏𝑏

1 +
𝑁𝑁𝑏𝑏

𝑛𝑛0 𝑁𝑁𝑤𝑤 𝑇𝑇 (𝜆𝜆)

)

, (14)

where ρ(κ) = 1/tanh(κ) − 1/κ is the expected length of a Fisher distribution with precision parameter κ and ρ −1 its 
inverse. When using a perfect outlier algorithm with (1 − poutlier)n0 ≥ 2, the approximation in Equation 13 is still 
appropriate. Further investigation is needed to estimate the final error when using iterative cut-off methods such 
as the Vandamme filter (Vandamme, 1994).
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Notice that the theoretical expression for the final dispersion can be used to define confidence intervals around 
the true pole for a specific study case. Effectively, given a sampling procedure with prescribed N and n0, we can 
estimate the dispersion parameters κw and κb and then, by plugging these into Equations 12 and 13 obtain a confi-
dence region around the sample estimated pole. This procedure will take into account the hierarchical nature of 
paleomagnetic samples at the moment of quantifying uncertainty.

5. Recommendations
When the goal is to estimate the position of a paleopole, our results show that the total number of sites N 
has a far larger impact on accuracy than the number of samples per site n0. We therefore recommend the 
following rule of thumb for sample collection where the objective is paleopole estimation: the more samples 
the better, but efforts to maximize the number of independent sites will have a greater effect on improving 
accuracy than more samples per site. In particular, the benefit of collecting more samples per site is small for 
n0 ≥ 3 and diminishes at n0 ≥ 5. Analyzing more samples than these values per site is inadvisable if it will 
result in fewer overall sites in a given study. As was concluded in Gerritsen et al. (2022), for the purpose of 
computing a paleopole and for a fixed total number of samples, it is always better to collect these samples 
from different sites than to collect more samples per sites. In the context of sedimentary sections, this result 
strongly supports stratigraphic sampling strategies of one sample per horizon for directional estimation where 
each sample is its own site, consistent with previous findings by Vaes et al. (2021). Collecting a large number 
of single-sample sites is also beneficial for the application of the elongation-inclination (E/I) correction for 
inclination shallowing (Tauxe & Kent, 2004), which requires N ≥ 100 to be robust. In settings of limited sites 
or where moving between sites is itself resource intensive, as can be the case of igneous intrusions, there is a 
benefit to more samples per site given that it can improve site level direction estimates and enable within site 
outlier detection.

A recent approach to synthesize site data into apparent polar wander paths developed by Gallo et  al.  (2023) 
enabled the propagation of directional uncertainty using site level precision κw estimated by multiple samples in 
a given site. This approach is not possible when applying a n0 = 1 sampling strategy. However, estimation of the 
in-site dispersion can be derived using a different estimator such as the maximum angular deviation (MAD) of a 
directional fit (Khokhlov & Hulot, 2016).

For paleopole estimates, filters based on populations of VGPs can aid in the detection of outliers (e.g., 
Vandamme, 1994). If there is an appreciable outlier rate, such filtering schemes are necessary when n0 = 1 given 
that outliers cannot be detected through within site consistency. When conducting a study with a low number 
of samples per site, the site consistency test proposed by Gerritsen et  al.  (2022) can be applied where more 
samples are analyzed for selected sites. This field test can be used to gain insight into within site reproducibility 
and precision for a given lithology. Multiple samples per site can also be advisable when the presence of single 
outliers would have a major impact on interpretations such as in the case of interpreting geomagnetic polarity or 
transitional directions. We recommend that researchers use of Equation 13 to obtain an estimate of the net error 
as a function of the expected parameters present in the sampling.

An important caveat concerning the use of directional filters is that while the mean may be relatively insensitive 
to their effects, they can significantly distort the shape of the true directional distribution and should therefore 
be avoided where the latter is a parameter of interest (e.g., paleosecular variation studies). Indeed, the pres-
ence of outliers has a major impact on the estimation of the dispersion, and thus the VGP scatter Sb. Increas-
ing the  number of samples per site n0 is beneficial as long as this helps us to detect outliers more accurately. 
However, this is not always straightforward using conventional data filters and cutoffs, which leads to a reliance 
on the expert's subjective interpretation (Gerritsen et al., 2022). There is a greater improvement in the accuracy 
of estimates of VGP scatter through increasing the number of samples per site, even in the absence of outliers, 
than there is for estimating the mean pole position. However, the improvement in the estimate of the VGP scatter 
progressively diminishes for increasing samples per site. When outliers can be detected efficiently, and for a mini-
mum of three or four samples per site, the same trade-offs as noted above for paleopole estimation again apply: 
the preferential collection of more sites over more samples per site leads to more accurate estimates of the VGP 
scatter. And again, the most optimal sampling scheme given any suite of expected parameters can be determined 
from the results presented herein.
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For general calculations of pole and VGP scatter accuracy, we recommend the interested reader to run their own 
experiments directly from the source code, which can be executed directly from the cloud using the provided 
Binder link (Project Jupyter et al., 2018) in the Code Availability section (Sapienza et al., 2023).

6. Conclusions and Future Directions
The hierarchical nature of sampling in paleomagnetic investigations is a long-standing practice, but the commu-
nity's specific default sampling strategies have largely relied upon conventional wisdom. Here we quantitatively 
explored, both numerically and analytically, the impact of different sampling strategies on the accuracy of esti-
mates of paleopole position and VGP scatter. Our results demonstrate that when the objective is to estimate the 
position of the time-averaged paleomagnetic pole, a strategy that maximizes the number of sites is always the 
most favorable. Thus, given an infinite number of possible sites, it would be advantageous to collect as many 
single-sample sites as possible such as sampling one sample per stratigraphic horizon.

Where an estimate of VGP scatter is sought, the situation changes and the collection of single-sample sites 
hinders the estimation and exclusion of within-site directional scatter. The use of directional filters such as that 
of Vandamme  (1994) can lead to large inaccuracies in estimates of paleosecular variation. Here the optimal 
sampling strategy is more nuanced and the ideal number of samples per site depends on the expected proportion 
of outliers. However, the same general rule of thumb still applies: beyond some minimum number of samples per 
site the collection of additional sites should be prioritized over the collection of additional within-site samples.

We also emphasize that beyond these general rules of thumb, we herein provided tools enabling quantitative 
sampling recommendations to be generated from user-provided expectations. While specific project goals and 
geologic complexity should factor into project design we hope that these findings may free the community from 
the adoption of default sampling practices, and utilize statistically-informed strategies.

Appendix A: Mathematical Derivation of Approximated Dispersion for Fisher 
Distribution
In this section, we consider a series of theoretical derivation of the expected dispersion for the estimate of the 
true pole 𝐴𝐴 𝐴𝐴𝐴0 . These calculations will allow us to approximate the final distribution of the estimated 𝐴𝐴 𝐴𝐴𝐴0 as a Fisher 
distribution with precision parameter that will depend of the parameters listed in Table 1. The building blocks 
that lead to the final results in Equations 12 and 13 consist in finding approximate Fisher distributions for the 
following procedures.

1.  Mean of Fisher distributions
2.  Hierarchical sample of two nested Fisher distributions
3.  Superposition of Fisher and uniform distributions

Just as we assumed before, we randomly sample a total of N VGPs μi in latitude-longitude space from a Fisher 
distribution with mean μ0 and concentration parameter κb. Then, we sample site measurements 𝐴𝐴 𝐴𝐴∗

𝑖𝑖𝑖𝑖
 in direc-

tional space from a Fisher distribution with mean 𝐴𝐴 𝐴𝐴∗
𝑖𝑖
 and concentration parameter κw, where j = 1, 2, …, ni (see 

Section 2.1). We are going to use ρ(⋅) to refer to the function ρ(κ) = 1/tanh(κ) − 1/k, where κ will refer to the 
precision parameter of Fisher distributions. It can be shown that ρ(κ) is the expected length of a Fisher distribution 
with concentration parameter κ (Mardia et al., 2000).

The method for approximating Fisher distributions follows the moment matching procedure used in Heslop and 
Roberts (2020). If p(x) represents the probability density function of some random estimate with support in the 
unit-sphere given by 𝐴𝐴 

2 =
{

𝑥𝑥 ∈ ℝ
3 ∶ ‖𝑥𝑥‖ = 1

}

 ), then we aim to find the parameters 𝐴𝐴 𝐴𝐴 ∈ ℝ
3 (‖μ‖ = 1) and κ of 

the Fisher probability density function q(x; μ, κ),

𝑞𝑞(𝑥𝑥;𝜇𝜇𝜇 𝜇𝜇) =
𝜇𝜇

4𝜋𝜋 sinh(𝜇𝜇)
𝑒𝑒𝜇𝜇𝜇𝜇

𝑇𝑇 𝑥𝑥𝜇 (A1)

such that they minimized the Kullback–Leibler divergence DKL(p|q) given by

min
𝜇𝜇𝜇𝜇𝜇

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝|𝑞𝑞) =
∫
2

𝑝𝑝(𝑥𝑥)log
𝑝𝑝(𝑥𝑥)

𝑞𝑞(𝑥𝑥;𝜇𝜇𝜇 𝜇𝜇)
𝑑𝑑𝑥𝑥𝑑 (A2)
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As was found in Kurz et al. (2016), this approach is equivalent to finding a Fisher distribution q(x; μ, κ) with 
same mean direction and mean vector length, where the mean vector (both direction and length) is computed as 

𝐴𝐴 ∫
2 𝑥𝑥 𝑥𝑥(𝑥𝑥) 𝑑𝑑𝑥𝑥 . The technique then consists in estimating the mean resultant length of the estimated paleopole 𝐴𝐴 𝐴𝐴𝐴0 

and matching it with the corresponding Fisher distribution q(x; μ, κ) with same mean resultant length.

Our results can be summarized in the following propositions. Proofs can be found in the Supplementary Material.

Proposition 1. (Mean of Fisher Distributions). Consider a sample of n ≥ 2 independent Fisher distributions xi, 
i = 1, 2, …, n, with mean μ0 and precision parameter κ. Then the Fisher mean

�̂�𝜇 =
1

𝑛𝑛𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑛𝑛 =

‖

‖

‖

‖

‖

1

𝑛𝑛𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

𝑥𝑥𝑖𝑖

‖

‖

‖

‖

‖

 (A3)

is approximately Fisher distributed with mean direction μ0 and precision parameter κnρ(κ).

Proposition 2. (Hierarchical Sampling on Fisher Distributions). Consider the following hierarchical sampling 
of Fisher distributed random variables.

𝜇𝜇1 ∼ Fisher(𝜇𝜇0, 𝜅𝜅0)

𝑥𝑥 ∼ Fisher(𝜇𝜇1, 𝜅𝜅1)
 (A4)

Then the full distribution of x can be approximated by a Fisher distribution with mean μ0 and precision parameter 
κ* equal to

𝜅𝜅∗ =
𝜅𝜅0𝜅𝜅1

𝜅𝜅0 + 𝜅𝜅1

. (A5)

Notice that under the approximation that the dispersion coefficient S can be approximated as

𝑆𝑆2 ≈ 2

(

180

𝜋𝜋

)2
1

𝜅𝜅
, (A6)

we can then derive that the dispersion 𝐴𝐴 𝐴𝐴2
∗ associated to κ* can be approximated as

𝑆𝑆2
∗ ≈ 2

(

180

𝜋𝜋

)2
1

𝜅𝜅
= 2

(

180

𝜋𝜋

)2
𝜅𝜅1 + 𝜅𝜅2

𝜅𝜅1𝜅𝜅2

≈ 𝑆𝑆2

1
+ 𝑆𝑆2

2
, (A7)

where S1 and S2 are the dispersion associated to Fisher distribution with precision parameters κ1 and κ2, respectively.

Proposition 3. (Superposition of Fisher with Uniform distributions). Consider the model where we sample a 
total of n samples xi, i = 1, 2, …, n, from a Fisher distribution with some probability 1 − poutlier and with uniform 
distribution with probability poutlier:

𝑥𝑥𝑖𝑖 ∼ Fisher(𝜇𝜇𝜇 𝜇𝜇) with probability 1 − 𝑝𝑝outlier and

𝑥𝑥𝑖𝑖 ∼ Unif otherwise, for 𝑖𝑖 = 1𝜇 2𝜇 . . . 𝜇 𝑛𝑛𝜇
 (A8)

Then the Fisher mean 𝐴𝐴 𝐴𝐴𝐴 of the n samples can be approximated with a Fisher distribution with mean μ and preci-
sion parameter equal to n(1 − poutlier)κρ(κ).

These last three results allow us to approximate a hierarchical sample of Fisher distributions with a good level of 
accuracy. In order to compute the final dispersion of the pole, notice that each estimated VPG 𝐴𝐴 𝐴𝐴𝐴∗

𝑖𝑖
 in directional 

space can be approximated as a sample from a Fisher distribution with dispersion parameter

𝑛𝑛𝑖𝑖𝜅𝜅𝑖𝑖(1 − 𝑝𝑝outlier)𝜌𝜌𝑛𝑛𝑖𝑖 (𝜅𝜅𝑖𝑖), (A9)

where ρn(κ) = ρ(κ) for n ≥ 2 and ρ1(κ) = 1 (Propositions 1 and 3). We have introduced this extra notation in order 
to include both the ni = 1 and ni ≥ 2 cases in the same expression. Now, since the Fisher mean of the VGPs is 
computed in directional space, we need to include the latitude correction factor T(λ) when we convert these to 
VGP space (Cox, 1970). This then implies that we can approximate
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�̂�𝜇𝑖𝑖 ∼ Fisher
(

𝜇𝜇𝑖𝑖, 𝑛𝑛𝑖𝑖𝜅𝜅𝑤𝑤(1 − 𝑝𝑝outlier)𝜌𝜌𝑛𝑛𝑖𝑖 (𝜅𝜅𝑤𝑤)𝑇𝑇 (𝜆𝜆)
)

. (A10)

Finally, since μi (the mean direction for 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 ) is also Fisher distributed with mean μ0 and precision parameter κb, 
using Proposition 2 we have that the final pole 𝐴𝐴 𝐴𝐴𝐴0 will have dispersion parameter equal to

𝜅𝜅𝑏𝑏

1 +
𝜅𝜅𝑤𝑤

𝜅𝜅𝑏𝑏(1−𝑝𝑝outlier)𝑛𝑛𝑖𝑖𝜌𝜌𝑛𝑛𝑖𝑖 (𝜅𝜅𝑤𝑤)𝑇𝑇 (𝜆𝜆)

. (A11)

Now, if ni = n0 are all the same, we can average all the 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 to came up with the final pole dispersion parameter

�̂�𝜇0 ∼ Fisher

⎛

⎜

⎜

⎝

𝜇𝜇0,
𝑁𝑁𝑁𝑁𝑏𝑏𝜌𝜌𝑁𝑁 (𝑁𝑁𝑏𝑏)

1 +
𝑁𝑁𝑏𝑏

𝑁𝑁𝑤𝑤𝑛𝑛𝑖𝑖(1−𝑝𝑝outlier)𝜌𝜌𝑛𝑛0 (𝑁𝑁𝑤𝑤)𝑇𝑇 (𝜆𝜆)

⎞

⎟

⎟

⎠

. (A12)

Assuming ρ(κi) ≈ 1, we then obtain that the final estimate 𝐴𝐴 𝐴𝐴𝐴0 has a concentration parameter κ* approximately 
equal to

𝑁𝑁𝑁𝑁𝑏𝑏

1 +
𝑁𝑁𝑏𝑏

𝑁𝑁𝑤𝑤(1−𝑝𝑝outlier)𝑛𝑛0𝑇𝑇 (𝜆𝜆)

, 

which is the same expression as in Equation 12. In order to derive Equation 13, we rely again in the approximation 
of the dispersion given in Equation A6.

As we mentioned before, Proposition 3 will fail when the number of samples per site n0 is small and the number 
of outliers poutlier is large. For those cases, a better approximation is given by Equation  14. This arises from 
computing the expected vector length without outliers and then multiply the expected vector length by the factor 
(1 − poutlier), which gives an approximated vector length for this case. We then find the corresponding κ for such 
resultant length by computationally inverting the function ρ(κ).

Data Availability Statement
The Jupyter Notebooks and Python package created to execute the analysis in the paper is preserved at (Sapienza 
et al., 2023). We also provided reproducible support by including a Binder (Project Jupyter et al., 2018) link to 
execute all the code in the cloud here https://mybinder.org/v2/gh/PolarWandering/PaleoSampling/HEAD and a 
JupyterBook (Community,  2020) link here https://polarwandering.github.io/PaleoSampling/. We benefit from 
the use of PmagPy (Tauxe et al., 2016) for calculations and Dask for parallel computing (Dask Development 
Team, 2016).
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