
1.  Introduction
Plate tectonics is the differential motion of near-rigid blocks of lithosphere across the surface of Earth, separated 
by relatively narrow regions of deformation in spreading centers, transform faults, and subduction zones. The 
relative rigidity of plates means that the motion of most of Earth's surface can be described by a set of Euler poles 
which specify the position (in latitude and longitude) of a rotation axis and a rate of rotation about this axis for a 
given plate (cf. Cox & Hart, 2009). Individual points on a plate undergoing rigid rotation are described by small 
circle paths (Figure 1).

Euler poles are widely used for describing plate motions due to their simplicity and compactness (e.g., Argus 
et al., 2011; DeMets et al., 2010). Motion between tectonic plates has a tendency to remain constant, or approxi-
mately so, over time scales of millions of years (e.g., Iaffaldano et al., 2012; Müller et al., 2016). This consistency 
of motion can be seen physically expressed in the shape of oceanic fracture zones and in hotspot tracks across the 
lithosphere. These features often form gently curving arcs over large portions of Earth's surface that can be well 

Abstract  Apparent polar wander paths (APWPs) synthesized from paleomagnetic poles provide the most 
direct data for reconstructing past paleogeography and plate motions for times earlier than ca. 200 Ma. In 
this contribution, we describe a new method for APWP synthesis that extends the paleomagnetic Euler pole 
analysis of Gordon et al. (1984, https://doi.org/10.1029/TC003i005p00499) by placing it within the framework 
of a Bayesian inverse problem. This approach incorporates uncertainties in pole positions and age that are 
often ignored in standard treatments. The paleomagnetic Euler poles resulting from the inversions provide 
estimates for full-vector plate motion (both latitude and longitude) and associated uncertainty. The method 
allows for inverting for one or more Euler poles with the timing of changepoints being solved as part of the 
inversion. In addition, the method allows the incorporation of true polar wander rotations, thus providing an 
avenue for probabilistic partitioning of plate tectonic motion and true polar wander based on paleomagnetic 
poles. We show example inversions on synthetic data to demonstrate the method's capabilities. We illustrate 
application of the method to Cenozoic Australia paleomagnetic poles which can be compared to independent 
plate reconstructions. A two-Euler pole inversion for the Australian record recovers northward acceleration 
of Australia in the Eocene with rates that are consistent with plate reconstructions. We also apply the method 
to constrain rapid rates of motion for cratonic North America associated with the Keweenawan Track of late 
Mesoproterozoic paleomagnetic poles. The application of Markov chain Monte Carlo methods to estimate 
paleomagnetic Euler poles can open new directions in quantitative paleogeography.

Plain Language Summary  Movement of Earth's tectonic plates results in large changes in continent 
positions over time known as paleogeography. Reconstructing paleogeography is central for understanding long 
term changes to Earth's surface and interior. Ocean floor data are very useful for determining these motions, but 
only exist for the most recent 4% of Earth's history. For older times, we use magnetic directions in rocks that 
show positions relative to the north pole. These records are called paleomagnetic poles and plate motions result 
in progressions of paleomagnetic poles called paths. Earth scientists need ways to synthesize poles into paths. 
Ideally, such a synthesis uses uncertainties on pole positions and ages. We developed a new way to reconstruct 
plate motion from paleomagnetic poles using an approach called Bayesian inversion. We apply the method to 
pretend data to illustrate its capabilities. We then apply the method to real data such as that from Australia over 
the past 60 million years. This analysis shows change in the continent's position and the rate of its motion that 
is similar to approaches that rely on ocean floor data. For older times, the method can help reconstruct positions 
and provide estimates of plate motion rates and associated uncertainty.
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described by small circles, consistent with finite Euler rotations of the plate for an extended period of time. As 
such, the combination of an Euler pole plus a time interval for which it is active (often called a “stage pole”) is a 
convenient description of plate motions through Earth history.

The stage pole description of plate motions has been widely used in both continental reconstructions (e.g., Boyden 
et al., 2011) and in geodynamical modeling (e.g., Bull et al., 2014; McNamara & Zhong, 2005). Most recon-
structions of plate motions over the past 200 million years rely heavily on fitting Euler pole rotations to oceanic 
fracture zones, hotspot tracks, seafloor magnetic isochrons, and, to a lesser extent, paleomagnetic data (Muller 
et  al.,  1993; Müller et  al.,  2016; Seton et  al.,  2012). These relative plate motions are used to construct plate 
circuits that relate plates to one another and to the spin axis (e.g., Müller et al., 2016; Torsvik & Cocks, 2017). 
However, as we look further back in Earth history, many of the records on which these plate tectonic reconstruc-
tions rely largely disappear due to the subduction of oceanic lithosphere. Given the lack of oceanic crust older 
than ∼200 Ma, the paleomagnetic record from continental rocks is the dominant remaining data. These paleo-
magnetic data can be used in conjunction with geological data that provides information on the tectonic setting 
of continental margins as well as additional information, such as the correlation of geologic terranes, to develop 
paleogeographic reconstructions.

It is more challenging to reconstruct past plate motions from paleomagnetic pole positions than from data derived 
from oceanic lithosphere for a number of reasons, including: (a) the data are often sparser; (b) traditional pale-
omagnetic analysis constrains paleolatitude and the orientation of a continental block, but does not constrain 
paleolongitude without additional assumptions; and (c) paleomagnetic poles can have appreciable uncertainty in 
both position and age.

Gordon et al. (1984) noted that progressions of paleomagnetic poles (which are commonly referred to as apparent 
polar wander paths; APWPs) have arcing trajectories similar to fracture zones and hotspot tracks. This similar 
geometry is expected given that they are also tracking plate motion (Figure  1). Building on the approach of 
Francheteau and Sclater (1969), Gordon et al. (1984) developed an algorithm to find the best-fit small circles 
to paleomagnetic poles, which would furnish Euler poles for the plate in question for that time period. This 
approach for constraining APWPs, called paleomagnetic Euler pole analysis, has the attractive feature of provid-
ing a complete description of the plate motion, including paleolongitudinal changes and therefore rates of motion. 
However, it has the drawback of not providing readily computed uncertainties associated with the paleomagnetic 
poles and not incorporating age uncertainties. An additional complexity is that while relative motions between 
tectonic plates can be consistent over extended periods and explained by a single Euler, absolute plate motion 
relative to the spin axis can be more time variable due to changes associated with one of multiple Euler rotations 
through a plate circuit or due to a combination of plate tectonic motion and true polar wander. With some notable 
exceptions (e.g., Beck, 1989; Beck & Housen, 2003; Bryan & Gordon, 1986; Smirnov & Tarduno, 2010; Tarling 
& Abdeldayem, 1996), paleomagnetic Euler pole analysis has not seen wide adoption.

In this contribution, we extend paleomagnetic Euler pole analysis by placing it within a Bayesian statistical frame-
work and demonstrate how to invert for paleomagnetic Euler poles using Markov chain Monte Carlo (MCMC) 
methods. This framework has the advantage of naturally incorporating uncertainties in paleomagnetic pole posi-
tions, as well as widely disparate age uncertainties associated with individual paleomagnetic poles. The resulting 
stage poles from these inversions are not a single answer, but are instead a distribution of possible answers, 
furnishing uncertainties as part of the solution process. Proper treatment of uncertainties also allow researchers 
to avoid overfitting models to noise. For instance, Iaffaldano et al. (2012) employed a similar Bayesian approach 
to inversions for finite plate rotations. They used seafloor data to reconstruct relative plate motion across Atlantic, 
Indian and South Pacific ridges incorporating uncertainties into the inversion. In the process, they demonstrated 
that interpretations of changes in relative plate motions on timescales <1 Myr are the result of overfitting the data 
and concluded there are fewer kinematic changes and longer stability in plate motions than suggested by some 
previous treatments.

In the sections below, we first review different approaches that have been applied to synthesize and interpret 
APWPs. We then describe the formalism of Bayesian inversions and MCMC methods that we will apply. We 
then describe the statistical model which we will be inverting and demonstrate the inversion of several synthetic 
data sets. Finally, we show case studies where we apply the method to paleomagnetic poles in order to develop 
estimates of paleomagnetic Euler poles and associated plate motion.
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2.  Interpretation of Apparent Polar Wander Paths
A sequence of paleomagnetic poles from the same continental block can be 
synthesized into an APWP, which can then be used to develop plate tectonic 
reconstructions and models of plate motion with respect to Earth's spin axis 
through time. Interpretation of these paths becomes difficult in the case of 
limited, uncertain, or conflicting data, and when the ages of paleomagnetic 
poles are poorly known. A number of approaches to developing APWPs have 
been developed, which we briefly review here.

2.1.  Latitudinal Drift

A paleomagnetic pole provides constraints on the paleolatitude and orien-
tation of a lithospheric block. However, due to the rotational symmetry of 
Earth's time-averaged geocentric axial dipole magnetic field, paleomagnetic 
poles do not directly constrain absolute paleolongitude (Butler, 1992). The 
simplest analysis of an APWP is to compare the paleolatitudes implied by 
successive poles for a point on a respective block. The difference in paleolat-
itudes gives a minimum angular distance over which the block has traveled. 
When this distance is compared to the age difference between the poles, such 
a comparison establishes a rate of latitudinal motion.

It is possible to estimate confidence bounds on the rate of latitudinal drift 
through bootstrap resampling (e.g., Tarduno et  al.,  1990) or by taking a 
Monte Carlo approach. Swanson-Hysell et  al.  (2014) developed a Monte 
Carlo sampling method and applied the method to a pair of poles from the 
Proterozoic Midcontinent Rift of North America to estimate the range of 
implied latitudinal drift. They also sampled from the uncertainties of radi-
ometric dates associated with the poles, assuming Gaussian distributions, in 
order to incorporate age uncertainties into the analysis. With samples of pole 
position and ages, they were able to estimate the 95% confidence estimates 
on the rate of latitudinal drift.

Whether using point estimates of the latitudinal drift rate or using Monte Carlo estimates, the latitudinal drift 
interpretation of APWPs remains limited as it represents a minimum estimate of total plate motion. It does not 
resolve longitudinal drift rate, nor does it naturally extend to APWPs with more than two poles, especially if two 
coeval poles are not in agreement, as it requires the selection of pole pairs.

2.2.  Spherical Splines

When considering APWPs with many poles, it becomes more difficult to perform latitudinal comparisons 
between pairs of poles. It is not always clear which pairs of poles to compare in cases where there are many over-
lapping paleomagnetic poles that have variable uncertainties associated with their positions and ages.

One approach to synthesize such data is to fit a spline through the set of paleomagnetic poles, constraining the path 
to lie on the surface of a sphere. This approach was pioneered by Torsvik et al. (1992) using the spherical spline algo-
rithm developed by Jupp and Kent (1987). This approach has the advantage of allowing the paleomagnetic poles to be 
weighted by their spatial uncertainties. The uncertainty assigned to a paleomagnetic pole can be the 95% confidence 
interval on the pole position, but it can also be augmented by various quality screening factors, such as the quality 
(“Q”) factor of Van der Voo (1990) (Torsvik et al., 1992). Even with the weighting of the paleomagnetic poles by 
uncertainty, there can be unrealistic loops in the APWP generated by the spline fit. To combat this behavior, the spline 
can also be computed under tension which penalizes curvature and produces a smoother path (Torsvik et al., 1996).

The spherical spline approach to interpreting APWPs has attractive features. It produces a smooth path through the data 
that can incorporate spatial uncertainties, and may be efficiently computed. However, it does have some drawbacks. 
It is not easy to determine the appropriate uncertainty weighting and spline tension parameters for the fit, and what 

Figure 1.  Conceptual model for a paleomagnetic Euler pole. A finite rotation 
of a plate around an Euler pole (dark red circle) results in arcuate oceanic 
fracture zones and hotspot tracks (cartoon mountains) which describe small 
circles on the globe. The same finite rotation produces a circle in the apparent 
polar wander paths (APWP), which is illustrated by blue paleomagnetic poles. 
By fitting a small/great circle to the APWP, we may recover the Euler pole that 
produced the rotation which is termed the paleomagnetic Euler pole. Cartoon 
is adapted from Gordon et al. (1984).
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effect those choices have on the result. Furthermore, the resulting fit does not have an uncertainty with a physically 
interpretable meaning (Torsvik et al., 1996). It also does not have a simple way of incorporating age uncertainties of the 
paleomagnetic poles. Finally, by their nature, splines do not readily represent the sharp hairpin cusps that characterize 
abrupt shifts in motion that plates sometimes undergo (Gordon et al., 1984; Irving & Park, 1972; Torsvik et al., 2012).

2.3.  Running Means

An alternative method for developing APWPs is to perform a running Fisher mean on the poles with a moving 
window through time (Irving, 1977; Torsvik et al., 2008; Van der Voo & Torsvik, 2001). In such an analysis, 
paleomagnetic poles in a compilation are averaged with a defined window duration (typically 10–30 Myr) that 
controls the amount of smoothing. Like spherical splines, the running mean approach has the ability to effectively 
damp the effect of outlier poles that could lead to spurious motion in the APWP if there are sufficient data. Torsvik 
et al. (2008) also investigated the effects of combining running means with spherical splines, by first computing a 
set of mean poles and then fitting a spline through those means. The simplicity of using the running mean approach 
to develop an APWP, as well as its ability to suppress potentially spurious poles, has led to it being widely adopted.

While it is a straightforward approach with advantages for synthesizing paleomagnetic poles, the running mean 
approach shares many of the drawbacks of the spline approach. As with the spherical spline method, age uncer-
tainties on the poles are not incorporated, nor are the uncertainties in pole positions as typically implemented. It 
is not obvious how to best choose the window duration, and different window durations are likely appropriate for 
different data sets. It is also unclear how to interpret the resulting uncertainties in the path that are reported as a 
Fisher A95 ellipse of the mean of the poles as the poles need not be coming from a Fisher distribution particularly 
if there is ongoing plate motion. A recent study discussed the advantage that could be gained by calculating 
APWPs from site level data (virtual geomagnetic poles) rather than from study level mean paleomagnetic poles 
(Vaes et  al.,  2022). This work highlighted how such an approach could ameliorate the disadvantage of typi-
cal running mean approaches of giving equal weight to study level poles which themselves comprise varying 
numbers of site level virtual geomagnetic poles.

2.4.  Paleomagnetic Euler Poles

The idea of fitting small circles to paleomagnetic data to gain insight into plate motions was first described by 
Francheteau and Sclater (1969). The center of such a circle on a sphere is the pole of rotation which was termed a 
paleomagnetic Euler pole by Gordon et al. (1984) who developed a method to invert for the position of such poles. 
The approach builds on the recognition that plate motions can often be approximated by finite rotations around 
Euler poles which can potentially be steady for millions or tens of millions of years. As a result, an arcuate APWP 
of a plate can be described by Euler rotations, which produce small circle paths on Earth's surface if the Euler 
pole remains in a relative constant position (Figure 1). Since the analysis solves for the Euler pole that produces a 
given small circle, this approach allows for an estimate of the full motion of a given plate, including the total plate 
speed (instead of just the latitudinal component of the speed). Effectively, the analysis utilizes both the change in 
plate orientation and latitude information embedded within paleomagnetic poles to estimate both latitudinal and 
longitudinal motion as succinctly specified by Euler pole parameters.

However, paleomagnetic Euler pole analysis has many of the same deficiencies that spline fits and running means 
have—it is not easy to compute uncertainties, especially in the presence of unknown ages of poles. Furthermore, one 
has the additional challenge and related uncertainty of deciding how many paleomagnetic Euler poles to include for a 
given sequence of paleomagnetic poles. In most treatments, this number of stage poles is subject to researcher choice 
(however, see theoretical progress in this regard by Gallo et al. (2022)). In this contribution, we develop a Bayesian 
statistical approach to paleomagnetic Euler pole analysis which attempts to address some of these deficiencies.

3.  Bayesian Inversion
3.1.  A General Description of Inverse Problems

The central question motivating inverse problems is “How probable is a particular model, given my observa-
tions?.” We represent observations by the data vector d, and a model by the vector of model parameters m, so the 
above question can be expressed as the function P(m|d) (the probability of the model given the data). Traditional 
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frequentist approaches to an inverse problem often proceed by maximizing the likelihood function, defined by the 
probability of the data given a particular model (e.g., Aster et al., 2005):

(𝐦𝐦|𝐝𝐝) ≡ 𝑃𝑃 (𝐝𝐝|𝐦𝐦).� (1)

The likelihood function replaces something that is difficult to compute (namely, P(m|d)) with something that is 
less difficult to compute. To compute 𝐴𝐴 (𝐦𝐦|𝐝𝐝) we need to have two things: a statistical model for uncertainties in 
the observations d and a forward model that allows us to compute predictions. We denote the forward model by g:

𝐝𝐝
𝑝𝑝 = 𝐠𝐠(𝐦𝐦),� (2)

where the superscript “p” denotes a predicted value. If each of the observed data di are described by Gaussian 
random variables with standard deviations σi, the likelihood function is given by the product of the individual 
likelihoods of the observations:

(𝐝𝐝|𝐦𝐦) =
∏

𝑖𝑖

exp

(

−

(
𝑑𝑑𝑖𝑖 − 𝑑𝑑

𝑝𝑝

𝑖𝑖

)2

2𝜎𝜎2
𝑖𝑖

)

.� (3)

The likelihood function 𝐴𝐴  is maximized by searching over the model parameter space. If the uncertainties in the 
observations are Gaussian, then maximizing the likelihood function is equivalent to the least squares solution 
(Aster et al., 2005).

A standard maximum likelihood fit will frequently overfit the observations, resulting in unrealistic solutions. In 
the context of APWPs, these overfit solutions may pass through every paleomagnetic pole, including less reliable 
ones, resulting in loopy or jerky paths. In order to address such overfitting, some form of regularization is usually 
included in the solution of the inverse problem, such as penalizing the magnitude or curvature of the solution. Both 
the running-mean and the spline under tension approaches to APWPs are forms of regularization on the problem.

3.2.  Bayesian Approach

The Bayesian approach to inverse problems takes a different strategy from the frequentist one. Rather than finding 
a model with parameters that maximize the likelihood, it treats the underlying model as a set of random variables 
with individual probability distributions. The probability distribution of the model given the data (P(m|d)) is then 
found by an application of Bayes theorem (cf. Sivia & Skilling, 2006):

𝑃𝑃 (𝐦𝐦|𝐝𝐝) =
𝑃𝑃 (𝐝𝐝|𝐦𝐦)𝑃𝑃 (𝐦𝐦)

𝑃𝑃 (𝐝𝐝) .
� (4)

It is often unnecessary to calculate the denominator of Equation 4, which is a normalization constant, leaving us with

𝑃𝑃 (𝐦𝐦|𝐝𝐝) ∝ 𝑃𝑃 (𝐝𝐝|𝐦𝐦)𝑃𝑃 (𝐦𝐦) .� (5)

The quantity P(m|d) is known as the posterior probability, and it represents our desired knowledge about the 
distributions of the parameters m. The first factor on the right-hand-side of Equation 5 is identical to the likeli-
hood function described above, and the second factor is known as the prior probability of the model. In the case 
for Euler pole and/or true polar wander inversions, our model parameters are Euler pole positions (longitudes, 
latitudes) and rotation rate as well as changepoints (when multiple rotations are inverted for).

In this case, the prior probability distributions reflect the state of our knowledge and beliefs of the values of the 
Euler rotation axes and rotation rates prior to the consideration of data. It allows us to incorporate theoretically or 
empirically derived constraints that are not otherwise included in the forward model. In contrast with the classical 
statistical approach of regularization, the Bayesian inverse problem can (in effect) regularize the problem by 
making choices of probability distributions that have less probability density in parameter space with less realistic 
values (e.g., Minson et al., 2013; Sambridge et al., 2013).

3.3.  Markov Chain Monte Carlo Methods

For complex models, it is usually impossible to calculate the posterior probability distribution in Equation 4 
directly (Davidson-Pilon, 2015). It is much more tractable to generate a Markov chain which, upon convergence, 
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generates samples from the desired posterior distribution (Gelman et al., 2013). This approach defines a class of 
methods known as MCMC methods.

In comparison with drawing Monte Carlo resamples from random variables independently, MCMC resampling 
generates a sequence of samples where the current value for each variable is dependent on its prior value. This 
approach allows for more efficient sampling of probability distributions with sampling that converges toward 
higher posterior probabilities. For an introduction to MCMC methods, the interested reader could refer to Gelman 
and Rubin (1996), Sambridge et al. (2013), and Davidson-Pilon (2015). A number of high-quality open source 
software packages for implementing MCMC models exist, including WinBUGS (Lunn et  al.,  2000), PyMC 
(Salvatier et al., 2016), and Stan (Carpenter et al., 2017). We make extensive use of PyMC in this work.

3.4.  Distributions on a Sphere

In order to proceed with a Bayesian description of the problem, every parameter in the model needs to be described 
by some statistical distribution that determines the probability that the parameter takes a specific value. Param-
eters like pole ages can be described by 1D probability distributions (such as uniform or normal distributions), 
whereas Euler pole locations are described by 2D distributions of directional data on the surface of a sphere. We 
review several of these distributions here. For a comprehensive discussion of spherical probability distributions, 
see Fisher et al. (1987). Plots of the following distributions (uniform, Fisher, and Watson), as well as samples 
drawn from them, are shown in Figure 2.

3.4.1.  Uniform Distribution

The simplest probability distribution on a sphere is the spherical uniform distribution. It has a probability density 
given by

�� (�, �) = 1
4�

cos� �� �� (x̂) =
1
4�� (6)

where ρU is the probability density, ϕ is the longitude, and ψ is the latitude (we refer to the Cartesian unit vector 𝐴𝐴 𝐴x 
as a concise representation of ϕ and ψ). Non-uniform distributions on a sphere reduce to the uniform distribution 
in some limit (i.e., the Fisher distribution as the precision parameter goes to zero). We use the uniform distribu-
tion when we want to specify an uninformative prior distribution for directional parameters.

3.4.2.  Fisher Distribution

The Fisher distribution (also called the von Mises-Fisher distribution) is the analogue of a 2D normal distribution 
on a sphere (Figure 2). The probability density ρF at a point 𝐴𝐴 𝐴x is given by

��(�, � ; �� , �̂) =
1
��

exp
(

�� x̂� �̂
)

= 1
��

exp (�� cos �) ,
� (7)

Figure 2.  Probability densities for distributions of directional data, as well as samples drawn from them. All distributions are 
plotted using an orthographic projection. (left panel) Uniform distribution. (middle panel) Fisher distribution. The center of 
the distribution is at 45°N, 30°E, with concentration parameter of κF = 50. (right panel) Watson girdle distribution. The pole 
of symmetry is at 30°N, 30°E, with a concentration parameter of κW = −25.
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where κF is the concentration of the distribution, 𝐴𝐴 𝐴𝐴𝐴 the unit vector for the mean direction of the distribution, and 
CF is a normalization coefficient. It can be alternatively parameterized using θ, which is the angle between 𝐴𝐴 𝐴x and 

𝐴𝐴 𝐴𝐴𝐴 . The normalization factor is given by

𝐶𝐶𝐹𝐹 =

𝜅𝜅𝐹𝐹

4𝜋𝜋 sinh 𝜅𝜅𝐹𝐹

.� (8)

When κF goes to zero, the Fisher distribution is equivalent to the spherical uniform distribution.

The uncertainty ellipses for paleomagnetic poles are typically calculated assuming a Fisher distribution of the under-
lying data, and we will use this distribution to calculate the likelihood function for pole positions in the model.

3.4.3.  Watson Girdle Distribution

Whereas the Fisher distribution concentrates probability density around a pole on the surface of the sphere, the 
Watson girdle probability distribution is concentrated in a belt orthogonal to the pole (Figure 2). It is useful for 
characterizing planar data, and is given by

�� (�, � ; �� , �̂) = 1
��

exp
(

��
(

x̂� �̂
)2
)

= 1
��

exp
(

�� cos2�
)

,
� (9)

where κW is the concentration of the girdle, CW is a normalization coefficient, and the other parameters are 
identical to those in the Fisher distribution. The Watson distribution is girdle-shaped only when κW is a negative 
number, which is the only case we consider here.

The normalization factor is given by

𝐶𝐶𝑊𝑊 =
[

1𝐹𝐹1

(
1

2
,
3

2
, 𝜅𝜅𝑊𝑊

)]−1
,� (10)

where 1F1() is Kummer's confluent hypergeometric function, which is available in most software libraries of 
special mathematical functions. As with the Fisher distribution, when κW goes to zero, the Watson distribution is 
equivalent to the spherical uniform distribution.

4.  A Model for Paleomagnetic Euler Pole Inversion
4.1.  Forward Model

A forward model describes how we generate predicted observations given a set of model parameters (Equation 2). 
The forward model for paleomagnetic Euler pole analysis in this study is essentially unchanged from that of 
Gordon et al. (1984). We will consider three overall scenarios of plate motions (and hence paleomagnetic pole 
motions). The first is that plate motion is the result of plate tectonic motion about an Euler pole or a series of Euler 
poles. Each Euler pole has three parameters: a latitude, a longitude, and a rotation rate. In a model with multiple 
Euler poles, we also must specify the ages where one Euler pole switches to the next as an additional unknown 
variable. In the context of parameter inversion, these ages are often known as “changepoints.” For plate tectonic 
motions, the motion can be along any plane intersecting the sphere such that they are small circles. The second 
scenario we will consider is one wherein the sole cause of the motion of paleomagnetic poles is true polar wander 
in which case motion is restricted to be along a great circle path coaxial to the axis of minimum inertia (Creveling 
et al., 2012). In such a model, three parameters exist: a latitude and a longitude of the true polar wander rotation 
axis and a rotation rate. A third scenario is that plate tectonic and true polar wander rotations are occurring 
concurrently leading to an observed paleomagnetic pole path.

We also need to initiate a model with a starting position on the globe, which, in practice, can be sampled from the 
Fisher distribution of the oldest paleomagnetic pole in the data set. The starting point contributes two parameters 
(a latitude and a longitude).

Therefore, a model with ne Euler rotations will have 3ne parameters for the poles, (ne − 1) parameters for the 
changepoints, and two parameters for the starting location. The number parameters for which we are inverting is 
then given by
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� = 3�� + (�� − 1) + 2

= 4�� + 1.
� (11)

Two more parameters will be included in a model where true polar wander is considered to happen on top of ne 
Euler rotations. In this case, the axis of true polar wander is constrained to be on a great circle that is orthogonal 
to the vector representing the starting pole position. Therefore, a total of 4ne+3 parameters are inverted for.

With the axes and rates for such spherical rotations defined, one can calculate the linear velocity v of a point p on 
the surface of the globe associated with angular velocity ωi by

𝐯𝐯 = 𝜔𝜔𝑖𝑖 × 𝐩𝐩.� (12)

Finite rotations can be performed by constructing Euler angle rotation matrices (cf. Goldstein, 1965). We gener-
ate synthetic paleomagnetic pole positions from the forward model by stringing together finite rotations through 
the stage poles until the age of the observed paleomagnetic pole is reached. These positions can then be compared 
to the observed paleomagnetic poles in a given dataset.

4.2.  Choice of Prior Distributions

Bayesian analysis requires us to specify prior probability distributions for each of the model parameters in the 
inverse problem. These distributions reflect our state of knowledge about the values of the parameters before we 
begin, and allow us the option of incorporating information otherwise not captured by the model. To avoid bias-
ing the results of the model toward a specific posterior distribution, we usually try to choose prior distributions 
that are as uninformative as possible. Depending upon the context, and the type of parameter, that choice may 
vary. The central parameters in the paleomagnetic Euler pole problem are the Euler pole positions, the Euler pole 
magnitudes, the changepoints, the starting point, and the paleomagnetic pole ages, which we treat in turn. We use 
the notation x ∼ y to indicate that the parameter x is drawn from distribution y.

4.2.1.  Euler Rotation Vectors

The first parameter we consider is the position of the Euler poles, which should be drawn from a spherical prob-
ability distribution. The least informative prior distribution for an Euler pole position is the uniform spherical 
distribution:

𝜔̂𝜔𝑖𝑖 ∼ 𝜌𝜌𝑈𝑈 .� (13)

essentially allowing the Euler pole to be anywhere on the globe with equal probability.

An alternative choice is to inform our prior distribution for Euler pole positions based on observation of modern 
plate motions. It has long been observed that, to first order, plate motions are well explained by slab-pull 
torques acting along subduction zones, and to a lesser extent, ridge push and mantle traction effects (Forsyth & 
Uyeda, 1975; Gordon et al., 1978; Richardson, 1992).

We can ask the question of whether the Euler pole for a given plate is more likely to be on top of the plate (corre-
sponding to a spinning motion for that plate) or away from that plate (corresponding to motion across the surface 
of Earth). Given that tectonic plates can broadly be considered to be the surface expression of mantle convection, 
we can hypothesize that the second possibility is more likely because a spinning plate has no divergence (i.e., 
spreading centers and subduction zones, (Forte & Peltier, 1987; Gable et al., 1991)). Without divergence, the 
plate motion does not contribute to large-scale convection.

To evaluate this hypothesis, we generated position samples on the surface of Earth and computed the angu-
lar distance between that point and the Euler pole for the plate in which that point resides. We used the 
NNR-MORVEL56 model for current plate motions (Argus et al., 2011) and restricted our analysis to the 14 larg-
est plates. We then fit those angular distance samples to a Watson girdle distribution (Equation 9), inverting for 
the concentration parameter κW. If an Euler pole position has no preference for being a particular angular distance 
from a point on a plate, then κW should be close to zero, corresponding to a uniform distribution. We find that 
the distribution is best fit with κW ≈ −0.7, which corresponds to the Euler pole probability density being roughly 
twice as large 90° away from a given point than on top of the point (Figure 3).
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4.2.2.  Euler Rotation Magnitudes

The magnitude of each Euler pole rotation is a positive number, specifying the rotation rate about the Euler pole 
(negative magnitudes can be accommodated by flipping an Euler pole to the antipode). There are several possi-
bilities for the prior distribution for the rates. In order to not bias the inversion toward a particular rate, we can 
choose a uniform prior distribution with large support:

|𝜔𝜔𝑖𝑖| ∼ 𝑈𝑈 (⋅, ⋅),� (14)

where U(⋅, ⋅) is a uniform distribution between two values, and is specified in degrees per million years. Typical 
rotation rates for present day plate motions are under 1°/Myr (Argus et al., 2011), which corresponds to plate 
speeds of about 11 cm/yr for a rotation about an Euler pole that is 90° from a plate.

Another option is to choose a weakly informative prior distribution for the Euler pole magnitudes informed 
by recent plate motions (similar our approach of the Watson girdle prior distribution for Euler pole position). 
Zahirovic et al. (2015) found, based on analysis of Cenozoic and Mesozoic plate reconstructions, that plate speeds 
much higher than 15 cm/yr were unlikely to be sustained. A reasonable choice of distribution for strictly positive 
numbers is the exponential distribution, given by

𝜌𝜌𝐸𝐸 (|𝜔𝜔𝑖𝑖|) = 𝜆𝜆exp (−𝜆𝜆|𝜔𝜔𝑖𝑖|) ,� (15)

which has higher probability density at lower values, and falls off exponentially toward higher values. We 
sampled the current plate rates on Earth's surface according to NNR-MORVEL56 and fit those to an exponential 
distribution. The best fitting scale parameter λ for current plate rates is ∼2.5 (Figure 3). Making this choice of 
prior distribution for Euler pole rotation rates can be seen as a form of regularization on plate speeds. A smaller 
for λ (such as λ = 1 as is shown in Figure 3) could reflect similar knowledge about the distribution of plate speeds 
with a less restrictive regularization.

Figure 3.  Informative prior distributions for Euler poles. (a) Prior probabilities for rotation rates. The histogram is the 
angular rotation rate from one thousand samples from the surface of Earth, using the NNR-MORVEL56 model. A fit to this 
sample set with an exponential distribution yields a scale parameter of λ ≈ 2.5. We also show the distribution for λ = 1.0, 
which imposes less regularization on the rate as a less restrictive prior distribution, and a uniform U(0, 4) distribution 
between 0 and 4°/Myr, which specifies no preference for slower speeds if set as the prior probability. (b) Prior probability 
density for the position of the Euler poles, with the north pole as the site latitude and longitude. We again sampled one 
thousand points on Earth's surface, calculating the angular distance between that point and the Euler pole for its plate. If 
we model the probability distribution as being drawn from a Watson distribution, these angular distances correspond to 
colatitudes, where the pole is the sampled point. Fitting the resulting angular distribution to a Watson girdle distribution finds 
κW ≈ −0.7. Since the Watson distribution is rotationally symmetric, longitudes do not contribute to the fit. For κW ≈ −0.7 the 
probability density is roughly twice as large at the equator (90° from a plate) as at the pole (on top of the plate).
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4.2.3.  Changepoints

Changepoints occur sequentially between the oldest (at age amax) and youngest (at age amin) paleomagnetic poles. 
We choose a uniform distribution as a prior for these changepoints:

𝑐𝑐𝑖𝑖 ∼ 𝑈𝑈 (𝑎𝑎min, 𝑎𝑎max) ,� (16)

where ci is the i'th changepoint.

4.2.4.  Starting Position

Finally, the starting position 𝐴𝐴 𝐴xstart for the set of Euler pole rotations needs a prior distribution. We could choose 
another uniform distribution, but a more reasonable choice is to start near the oldest paleomagnetic pole in the 
dataset. We therefore choose the Fisher distribution of the oldest paleomagnetic pole as a reasonable prior distri-
bution for a start point:

x̂start ∼ 𝜌𝜌𝐹𝐹 (𝜅𝜅𝐹𝐹0, 𝜇𝜇𝟎𝟎) ,� (17)

where κF0 and 𝐴𝐴 𝐴𝐴𝐴0 are the concentration parameter and mean direction of the oldest paleomagnetic pole in the 
dataset.

4.2.5.  Pole Ages

One of the major advantages of Bayesian analysis is the ability to naturally incorporate uncertainties in as many 
parameters as needed. Previous approaches to modeling APWPs have the drawback that they do not easily account 
for uncertainties in the age of paleomagnetic poles. In our approach, we can include age uncertainty by including 
the age of the poles and associated uncertainty as parameters in our model.

There are many different ways to constrain the ages of the geologic units from which we obtain paleomagnetic 
poles, including radiometric dating, biostratigraphy, magnetostratigraphy, and cross-cutting relationships. Here 
we concentrate on poles that are either interpreted to be the age of a single radiometric date or are interpreted to 
be bracketed stratigraphically between two dates (derived radiometrically or by using other age control such as 
biostratigraphy). If a geologic unit has been radiometrically dated, we can model the age of the j'th paleomagnetic 
pole aj as a normal distribution with mean μj and standard deviation σj:

𝑎𝑎𝑗𝑗 ∼ 𝑁𝑁 (𝜇𝜇𝑗𝑗, 𝜎𝜎𝑗𝑗) ,� (18)

where N(., .) denotes a normal distribution.

Frequently, however, the geologic unit from which we obtain a paleomagnetic pole is not well dated, but its age 
can be constrained to lie between those of well-dated units stratigraphically above and below it, dates obtained 
by cross-cutting relationships, or a number of dated units within a broader province. In these cases, a uniform 
distribution between those ages is a reasonable choice for the prior distribution:

𝑎𝑎𝑗𝑗 ∼ 𝑈𝑈
(
𝑎𝑎young, 𝑎𝑎old

)
,� (19)

where ayoung and aold are the ages of the lower and upper age constraints, respectively.

4.2.6.  True Polar Wander

Another advantage of this method is the ability to also incorporate a component of true polar wander rotation on top 
of Euler pole rotations. Because true polar wander represents the rotation of the entire solid Earth with respect to 
the spin axis, an APWP that is solely consisted of true polar wander should follow a great circle trajectory and  the 
associated rotation axis should be orthogonal to the great circle. In a case where both small circle rotations and true 
polar wander are recorded by an APWP, the true polar wander rotation axis is constrained to be 90° away from the 
start position of the path and the rotation rate can be defined in a similar fashion as that of the Euler pole magnitudes.

To summarize our choices for prior distributions:

•	 �Euler pole positions: spherical uniform distribution, or a Watson girdle distribution with κW ≈ −0.7 or a value 
closer to 0.
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•	 �Euler pole magnitudes: Uniform distribution, or an exponential distribution with λ ≈ 2.5 or smaller.
•	 �Changepoints: uniform distribution between amin and amax.
•	 �Starting position: Fisher distribution usually defined by the Fisher statistics of the oldest paleomagnetic pole 

position in an APWP.
•	 �Paleomagnetic pole ages: normal or uniform distribution, depending on the type of age control for the geologic 

unit from which the pole was obtained.

4.2.7.  Likelihood

In addition to the choice of prior distributions, we need a statistical description of the observations. This descrip-
tion will allow us to calculate the likelihood function, which, when combined with the prior distributions, allows 
us to evaluate Bayes' theorem (Equation 5).

In the case of APWPs, our observations are paleomagnetic poles. The most common statistical distribution for 
describing paleomagnetic poles is the Fisher distribution (although other distributions are sometimes used, such 
as the Kent or Bingham distributions, c f. Tauxe (2010)). Given the set of model parameters m and the forward 
model g(m), described above, we can calculate the predicted paleomagnetic pole unit vectors 𝐴𝐴 𝐴x

𝑝𝑝

𝑖𝑖
 . For a set of n 

paleomagnetic poles, the likelihood is then given by the product of the probabilities of each observation of pale-
omagnetic pole position:

𝑃𝑃 (𝐝𝐝|𝐦𝐦) =

𝑛𝑛∏

𝑖𝑖=1

1

𝐶𝐶𝐹𝐹𝐹𝐹𝐹

exp

(
𝜅𝜅𝐹𝐹𝐹𝐹𝐹x̂

𝑝𝑝𝑝𝑝

𝑖𝑖
𝜇̂𝜇𝑖𝑖

)
.� (20)

5.  Example Inversions
Before proceeding with inversions for paleomagnetic Euler poles using real paleomagnetic data, it is useful to 
consider a few examples of inversions for idealized synthetic datasets. We have specified the forward model 
described above using the package PyMC (Salvatier et al., 2016) which enables us to perform the inversion. Within 
PyMC, we are able to specify custom probability distributions enabling the directional data distributions illustrated 
in Figure 2 to be implemented. The MCMC analysis uses the Metropolis–Hastings algorithm for sampling as it can 
be applied to custom probability distributions in contrast with other sampling algorithms within PyMC. Our code 
for the inversions has an open-source GPL license and is available on Github (https://github.com/Swanson-Hy-
sell-Group/Bayesian_PEP_inversion) and archived on Zenodo (https://doi.org/10.5281/zenodo.7087845).

5.1.  One Euler Rotation

We begin by trying to recover the Euler pole for a single rotation. We generate an idealized synthetic APWP of 
four poles by starting from a pole at 19°N, 024°E, and rotating around an Euler pole at 00°N, 000°E for 100 Myr 
at a rate of 1°/Myr. We produce paleomagnetic poles at 100 , 75 , 50 , and 25 Ma, and prescribe A95 of 4° to each 
pole (where A95 indicates the 95% angular confidence for the pole position).

To demonstrate the ability to recover the Euler rotation axes and rotation rate using the inversion method, we 
introduce minimal prior knowledge on these parameters, but assume the ages of the paleomagnetic poles are well 
constrained. Therefore, we use a Watson girdle distribution with κW = −0.1 (more weakly informative than −0.7 
of Figure 3 and approaching a uniform distribution as illustrated in Figure S2 in Supporting Information S1) as 
the prior distribution for the Euler rotation axis, and a uniform distribution of U(0, 4) as the prior distribution for 
the Euler rotation rate (in °/Myr).

The results of the inversion are shown in Figure 4. The Bayesian approach successfully recovers a posterior 
probability distribution for the position of the Euler pole, as well as a rate that is centered near the true value 
of 1°/Myr (Figure 4b). The posterior distribution for the rate has a highest posterior density credible interval at 
95% (which we abbreviate from here as a 95% credible interval) between 0.7°/Myr and 1.2°/Myr, reflecting the 
resolving power of the inversion for data with the given uncertainties. An example of this same inversion with 
simulated noise on the age and position of paleomagnetic poles is developed in PEP_synthetic.ipynb within the 
archived code repository and shown in Figure S1 in Supporting Information S1. It is also successful in recovering 
the true values within the credible intervals of the posterior distributions.
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5.2.  Two Euler Rotations

We next consider an inversion for an APWP with two stage poles. Unlike the previous example where we inverted for a 
single Euler pole, this inversion also requires a changepoint. We generate nine idealized paleomagnetic poles with A95 
of 4° for each from a starting point at 5°S, 030°E. The first rotation is around an Euler pole at 10°S, 000°E, and rotates 
at 1.5°/Myr for 60 Myr. The second rotation is around an Euler pole at 10°N, 300°E and rotates at a rate of 0.75°/Myr 
for the same amount of time. The synthetic poles associated with this two stage model are shown in Figure 4.

During the inversion, the prior knowledge for the Euler rotation axes and rates and the age of the paleomagnetic 
poles are set in the same way as in the one Euler rotation section above. The prior distribution for the changepoint 
is set as a uniform distribution with the minimum and maximum ages being the age of the youngest and oldest 
paleomagnetic poles.

Figure 4.  Inversion for Euler poles from synthetic data. (a) Five paleomagnetic poles are generated during a net 100° rotation about an Euler pole at 00°N, 000°E over 
100 Myr, for a rotation rate of 1°/Myr. The blue distribution is the probability density of Euler pole positions recovered by Markov chain Monte Carlo (MCMC) inversion, 
and the blue arcs are 100 of the resulting synthetic apparent polar wander paths (APWPs) (sampled from 50,000). The color bar scale associated with the probability density 
is shown in a supporting information version of this figure (Figure S3 in Supporting Information S1). Such supporting information figures are provided for every Euler pole 
position plot in the paper (Figures S3–S6 in Supporting Information S1). (b) Posterior probability density for the rotation rate of the Euler pole recovered by the inversion. The 
solid line shows the median of the distribution (0.96°/Myr), and the dashed lines show the 95% credible interval (0.70° − 1.23°/Myr). (c) Paleomagnetic poles generated using 
two distinct Euler poles. The first Euler pole is located at 10°S, 000°E (blue star), and rotates at 1.5°/Myr for 60 Myr. The second Euler pole is located at 10°N, 300°E (red 
star), and rotates at 0.75°/Myr for 60 Myr. The blue and red distributions show the posterior density of the first and second Euler poles (respectively) recovered by the MCMC 
inversion. The blue and red arcs are 100 of the synthetic APWPs. (d) Posterior probability density for the rotation rates of the Euler poles recovered by the inversion. The solid 
lines show the median values of the distributions (∼1.45°/Myr and 0.76°/Myr for Euler rotation 1 and 2), and the dashed lines show the 95% credible intervals.
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The inversion successfully recovers the Euler pole rotation rates with posterior distributions centered near the 
true values. The inversion also successfully recovers the changepoint of 60 Ma between the first and second Euler 
pole with a 95% credible interval for the changepoint of 65 to 55 Ma. The inverted Euler pole positions for the 
first stage pole (blue distributions in Figure 4c) are centered near the true location (blue star in Figure 4c) and the 
inverted second Euler pole positions (red distributions in Figure 4c) encompass the true location as well (red star 
in Figure 4c). There is a larger spread in credible Euler pole positions for the second Euler pole particularly in 
the direction perpendicular to the APWP. The greater uncertainty on the location of the second Euler pole results 
from the motion along the APWP being smaller relative to the uncertainty on the paleomagnetic pole positions. 
As a result, the inverted paths have more variable curvature.

Overall, this example demonstrates that the inversion framework can resolve APWPs with more than one stage 
pole and provides posterior probability distributions on the Euler rotation changepoint in addition to the multiple 
Euler poles positions and rates (Figures 4c and 4d).

5.3.  Incorporating Age Uncertainty

A benefit of the Bayesian approach to inverse problems is its generality. As long as some effect can be described 
statistically and incorporated into our forward model, we can include it in the inverse problem. As a result, we 
are able to include uncertainties on the ages of paleomagnetic poles. Assigning a fixed single age to paleomag-
netic poles can bias an analysis when the age of a pole is not precisely known. The inversion framework enables 
the varying certainty on pole ages to be incorporated into the analysis. To demonstrate this capability, we use a 
similar test case as in the one Euler pole inversion with the ages of synthetic poles being adjusted to span from 
140  to 40 Ma (poles of 140, 115, 90, 65, and 40 Ma) (Figure 5a), but assign prior distributions for the ages of the 
poles. For the first and last poles, we assume they are radiometrically dated with standard deviations of 5 Myr. 
However, we assume that the middle three poles have no age control, except that their ages are constrained to be 
between the first and last poles. We thus assign Gaussian prior distributions to the first and last poles and uniform 
prior distributions to the middle three (Figure 5b). Despite this uninformative prior distribution on the age of the 
middle three poles, the inversion successfully places the estimated distributions of ages of the middle three poles 
to be centered at ca. 115 , ca. 90 , and ca. 65 Ma as can be seen in their posterior age distributions (Figure 5d).

For real data, adding uncertainties to the ages of the poles enables us to properly represent our knowledge of the 
constraints on the APWP. These uncertainties enable data to constrain the location of the path without provid-
ing an overly tight constraint on the timing when the true age is uncertain. The resulting posterior distributions 
provide predicted ages for the poles associated with Euler pole inversions (Figure 5d).

5.4.  Reporting the Apparent Polar Wander Path

A difficulty with the Bayesian approach is that the credible interval of Euler pole posterior positions are not easy 
to report as they do not neatly correspond to a parametric statistical distribution. We visualize the solutions with 
spatial histograms for the Euler pole positions and by showing example inverted paths. A typical product that one 
is seeking with such an inversion is an apparent polar wander path reported as interpreted pole position at given 
intervals. An approach that can be taken is to calculate a number of predicted pole positions at a given time implied 
by inverted Euler pole models and then to calculate the Fisher mean of these inverted pole positions as was done 
in Swanson-Hysell et al. (2019). This approach provides the mean pole position on the apparent polar wander path. 
We also wish to report the uncertainty on that estimated position. The spread in the position of these inverted pole 
positions has real meaning related to the certainty of the path position at a given time resulting from the Euler pole 
positions and rotation rates in the posterior distribution. The spread in pole positions can be approximated as a 
Fisher distribution from which the angle from the mean that contains 95% of the solutions (θ95) can be calculated:

𝜃𝜃95 =
140◦
√
𝜅𝜅

� (21)

This angle is analogous to a 2σ uncertainty in Gaussian statistics. The pole positions typically are consistent 
with being drawn from a Fisher distribution such that reporting the 95% confidence of angular deviation can be 
appropriate, but note that the distributions are not necessarily Fisherian such that this can be a simplified approx-
imation. Regardless, implied pole positions from these inversions are more tightly clustered than the inverted 
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Euler pole positions themselves. This approach for summarizing an APWP is applied to Australia's Cenozoic 
path in the following section.

6.  Application to Australia's Cenozoic APWP
Australia and East Antarctica were connected from the Proterozoic Eon until the Mesozoic Era when rifting led to 
the onset of seafloor spreading between the continents ca. 83 Ma (Veevers, 2012; Williams et al., 2011). Austral-
ia's plate motion relative to East Antarctica is considered to be well constrained from ca. 61 Ma to the present on 
the basis of fracture zones and magnetic anomaly data (Cande & Stock, 2004). The plate motion model of Müller 
et al. (2016) utilizes the reconstruction of Australia relative to East Antarctica of Cande and Stock (2004) for 
38 Ma to the present-day and that of Whittaker et al. (2007) for 100 to 38 Ma. The absolute motion of Australia 
is constrained in the model through a plate circuit that reconstructs Australia relative to East Antarctica, East 
Antarctica relative to Africa, and Africa relative to the spin axis (Müller et  al.,  2016). The relative motions 
between the plates in this plate circuit that are implemented in the plate model of Torsvik and Cocks (2017) have 
small differences from that of Müller et al. (2016) such as the use of Tikku and Cande (2000) for the Australia to 
East Antarctica rotation between 84 and 44 Ma. Despite these small differences, the overall relative motions are 
quite similar. A more significant difference is the use of a different reference frame for the solid Earth relative to 

Figure 5.  Synthetic data and one Euler pole inversion incorporating age uncertainty. (a, b) Assigned distributions associated with the paleomagnetic pole positions and 
ages. We take the first and last poles to be radiometrically dated with 1σ uncertainties of 5 Myr such that they are assigned Gaussian prior distributions. The middle 
three poles are undated and constrained to be between the first and last poles with uniform probability. (c, d) Posterior distributions after 10 4 Markov chain Monte 
Carlo samples of the Euler pole position and pole ages. The posterior distributions for the age of the middle three poles are centered on their true values of 115, 90, and 
65 Ma. The middle poles help constrain the location of the Euler pole, but with their wide uniform prior age distributions do little to constrain the rotation rate.
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spin axis between Müller et al. (2016) and Torsvik and Cocks (2017). The choice in this regard is important as 
pertains to comparisons with paleomagnetic data as paleomagnetic data is in the reference frame of the spin axis. 
The model of Müller et al. (2016) reconstructs plates relative to the global moving hotspot reference frame of 
Torsvik et al. (2008) which is taken as fixed relative to the spin axis over the Cenozoic. In contrast, Torsvik and 
Cocks (2017) utilize the reference frame of Doubrovine et al. (2012) which includes true polar wander rotation 
between the global moving hotspot reference frame and the spin axis. Notably, a recent analysis of interpreted 
hotspot tracks in Eastern Australia by Hansma and Tohver (2020) argued that their position in a paleomagnetic 
reference frame is consistent with the true polar wander implemented in the Doubrovine et al. (2012) reference 
frame. In Figure 6, we show the implied pole position for Australia that results from these global plate motion 
models. Both models imply faster Euler rotation rates after ∼35 Ma than before that time associated with an 
acceleration in Australia's northward drift (Figure 6d). We use these plate motion models that are largely based 

Figure 6.  (a) Cenozoic paleomagnetic poles for Australia used for the Bayesian inversion model are shown as circles with their A95 confidence ellipses colored by age. 
The continuous path using the same color scale is the implied pole position extracted from the Müller et al. (2016) and Torsvik and Cocks (2017) models which are 
dominantly based on seafloor data for this time interval. (b) The latitude of the pole position for the paleomagnetic poles is shown with their positional and temporal 
uncertainties. The black lines are the latitude of the pole position implied by the Müller et al. (2016) and Torsvik and Cocks (2017) models which undergo changes in 
slope ca. 40 to 35 Ma. The thin red and blue lines are 100 of the pole paths resulting from the two Euler pole inversion with blue being the older path segment and red 
the younger segment. The lower histogram shows the posterior distribution of the age of changepoints from the older to younger Euler pole in the inversion which has 
a median of 40.8 Ma. (c) 100 sample paths (blue older; red younger) from the inversion are shown in comparison to the Müller et al. (2016) (triangles) and Torsvik 
and Cocks (2017) (squares) paths as well as density of the two inverted Euler poles (blue and red rectangles). Due to the low number of paleomagnetic poles between 
60 Ma and the changepoint, as well as the short length of the path, the position of the older Euler pole is not tightly constrained leading to the sparse blue density. The 
posterior distribution of the younger Euler pole position (red density on the globe) is more tightly constrained and coincides with the Euler poles (red stars) extracted 
from the global plate reconstruction models. (d) The top panel shows the posterior distribution of the Euler rotation rates associated with the older and younger 
inverted Euler poles with the median shown with the solid line and the labeled rates. The lower panel is the Euler rotation rates for Australia extracted from the Müller 
et al. (2016) global plate reconstruction model before and after 38 Ma illustrating good correspondence between the median of the inversion posterior and the rates from 
this seafloor data based model.
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on seafloor data as a comparison to an inversion of Cenozoic paleomagnetic data from Australia for the past 60 
million years.

There is a contentious history of interpreting Australia's Cenozoic paleomagnetic record leading to varying 
APWPs with discussions of the relative fidelity of igneous and sedimentary poles in the literature (e.g., Hansma 
& Tohver, 2019; Idnurm, 1985; Idnurm, 1994; Musgrave, 1989). The paleomagnetic pole database for Australia 
in the Cenozoic has improved substantially with the development of both new Oligocene and Miocene paleomag-
netic data (Hansma & Tohver, 2018, 2019) and Ar-Ar dates that provide ages for both previously undated units 
and supersede previous K-Ar dates (Cohen et al., 2008, 2013; Knesel et al., 2008). This updated paleomagnetic 
pole database is listed in Table 1 and visualized in Figure 6a. These paleomagnetic poles give us the opportunity 
to develop paleomagnetic Euler pole inversions that can be compared to the independent plate tectonic recon-
structions of Müller et al. (2016) and Torsvik and Cocks (2017).

The paleomagnetic data necessitate at least one change in the Euler pole between 60 Ma and the present. This 
need for more than one Euler pole is most readily visualized in the latitude of the poles which implies a change 
in rate between 60 Ma and the present (Figure 6b). We apply the Bayesian inversion framework to invert for two 
Euler poles for Cenozoic Australia using prior probability constraints from these paleomagnetic poles. We use an 
uninformed prior probability for the timing of the changepoint between the two Euler poles in which it is assigned 
a uniform probability distribution between the age of the oldest (∼60 Ma) and the youngest paleomagnetic poles 
(∼0.005 Ma) in the compilation. We also use a weakly informative uniform prior distribution of U(0, 4) for the 
Euler rotation rate, as we know based on the position and age of the paleomagnetic poles that the overall plate 

Study/Region Rock type PLat PLon A95 N Pmag reference
Age 
(Ma)

Age 
min

Age 
max Age information

Dist 
type

Holocene lake 
sediments

Sedimentary 89.4 144.6 1.5 57 Idnurm (1985) 0.005 0 0.01 Radiocarbon dates from Idnurm (1985) Uniform

Plio-Pleistocene 
mean

Mixed 87.7 353 3.2 48 as in Hansma and 
Tohver (2019)

2 1 3 As compiled in Hansma and 
Tohver (2019)

Uniform

Glenample Fm./Port 
Campbell Lst.

Sedimentary 77.2 303.5 3.9 30 Idnurm (1985) 13 9 17 Biostratigraphy from Dickinson 
et al. (2002)

Uniform

Cosgrove leucitite 
lavas

Igneous 80.2 275.4 8.6 15 Hansma and 
Tohver (2018)

16 15 17 Ar-Ar dates with range assigned by 
Hansma and Tohver (2018)

Uniform

Main Range 
Volcano

Igneous 76.6 271.6 6.1 25 as in Hansma and 
Tohver (2019)

23.45 20.2 26.7 Ar-Ar dates from Knesel et al. (2008) Uniform

Tweed Volcano Igneous 77.4 306.9 5.4 48 as in Hansma and 
Tohver (2019)

23.9 23.1 24.7 Ar-Ar dates from Knesel et al. (2008) Uniform

Pt. Addis Limestone Sedimentary 68.5 299.4 4.8 4.8 Idnurm (1985) 25.1 22.4 27.8 Ar-Ar and biostratigraphic constraints 
from Idnurm (1985); McLaren 

et al. (2009)

Uniform

Springsure Volcano Igneous 70.5 300.6 9.7 18 Hansma and 
Tohver (2019)

28.1 27.8 28.4 Ar-Ar date from Cohen et al. (2013) Normal

Peak Range Igneous 64.6 291.8 8.8 29 Hansma and 
Tohver (2019)

29.65 28.2 31.1 Ar-Ar dates from Cohen et al. (2013) Uniform

Hillsborough 
Volcano

Igneous 67.1 301.4 7.1 14 Hansma and 
Tohver (2019)

33.6 33.1 34.1 Ar-Ar date from Cohen et al. (2013) Normal

Browns Creek 
Formation

Sedimentary 65.5 292.5 2.5 33 Idnurm (1994) 35.5 36.2 34.9 Biostratigraphy and magnetostratigraphy 
from Shafik and Idnurm (1997)

Uniform

North Rankin 1 
Drill- core

Sedimentary 61.7 298.4 5.1 20 Idnurm (1985) 59.75 57 62.5 Foraminiferal zones P3 and P4 (ages of 
62.5 to 57 in GTS 2020)

Uniform

Note. PLat = pole latitude; PLon = pole longitude; A95 = 95% angular confidence bounds on pole positions; N = number of site level VGPs used to calculate the 
mean pole positions; Pmag reference = reference for paleomagnetic pole data; Age (Ma) = nominal age calculated from age constraints on paleomagnetic poles; Age 
min = lower bounds for pole ages; Age max = upper bounds for pole ages; Age information = summary description for geochronology methods for pole ages and 
associated references; Dist type = choice of using uniform or normal distributions for assigning prior uncertainties for pole ages.

Table 1 
Paleomagnetic Poles and Age Constraints Used for the Australia Cenozoic Apparent Polar Wander Paths Inversion and Associated References

 21699356, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021JB

023890, W
iley O

nline L
ibrary on [26/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

ROSE ET AL.

10.1029/2021JB023890

17 of 26

motion rate for Australia in the Cenozoic is most likely to be less than 4°/Myr (Figure 6a). For the prior distribu-
tion for the Euler rotation axes, we use a weakly informative Watson girdle distribution with κW = −0.1.

The posterior distribution of the Euler pole positions, samples of the small circle paths generated from the poste-
rior distributions, the implied pole latitudes, and the full plate motion angular rotation rates are shown in Figure 6. 
The probability density of the inverted positions for the younger Euler pole (ca. 40 Ma to present) is more tightly 
constrained than the older Euler pole position given both the higher number of paleomagnetic poles and longer 
track length. The posterior distribution of the younger Euler pole positions (red density in Figure 6b) recovered 
through the inversion correspond well with the Euler pole positions extracted from the Müller et al. (2016) and 
Torsvik and Cocks (2017) models (red and pink stars in Figure 6c). The inversion is also successful in recover-
ing the change in rate seen in both models where Australia's plate motion accelerated in the later portion of the 
Eocene (Figure 6b). The posterior distributions for Euler rotation rates have median values that increase from 
0.3°/Myr to 0.8°/Myr (Figure 6d). The 95% credible interval for the age of the changepoint associated with this 
change in rate spans from ca. 51 to 30 Ma with a median 40.8 Ma. While this broad posterior distribution reflects 
the sparse paleomagnetic poles constraints between 60 and 40 Ma, the timing of the change in rate is consistent 
with the Müller et al. (2016) and Torsvik and Cocks (2017) models (Figure 6b).

There is a closer correspondence between the latitude of the path inverted using the paleomagnetic pole constraints 
with the Müller et al. (2016) model than the Torsvik and Cocks (2017) model as can be seen by the inverted 
paths (red for younger Euler; blue for older Euler) plotting atop the thicker dashed line in Figure 6b. In contrast, 
there is a tighter correspondence between the longitude of the pole path resulting from the inversion with the 
Torsvik and Cocks (2017) model as seen in Figure 6c where the inverted paths are atop the squares which mark 
the Torsvik and Cocks (2017) path. The path of Müller et al. (2016) deviates to the east from the inverted paths 
whose trajectory are being constrained by the ca. 60 Ma North Rankin 1 Drillcore pole (Table 1). To facilitate 
these comparisons, we apply the approach described in the Reporting the apparent polar wander path section to 
summarize the new APWP (Table 2) and plot it with the implied pole positions of the Müller et al. (2016) and 
Torsvik and Cocks (2017) models in Figure 7.

It is intriguing that the inclusion of the Doubrovine et al. (2012) true polar wander correction in the Torsvik and 
Cocks (2017) model results in improved correspondence in the terms of pole longitude, but more of a discrepancy 
with the paleomagnetic poles and their inversion in terms of latitude (Figures 6 and 7). While the conclusions that 
can be drawn in this regard are limited given the restriction of the analysis to Australia, such comparisons could 

Bayesian PEP (2 plate tectonic Euler poles)

Age (Ma) PLon° PLat° Θ95

60 117.9 −61.8 3.5

55 116.4 −61.6 3.8

50 115.1 −61.6 4.8

45 114.2 −62.0 4.3

40 114.0 −63.5 3.1

35 114.3 −66.1 2.1

30 115.0 −69.3 2.1

25 115.9 −72.8 2.1

20 116.8 −76.3 2.1

15 117.8 −79.8 2.0

10 118.9 −83.4 1.7

5 120.8 −86.9 1.3

0 282.6 −89.6 1.4

Note. PEP: paleomagnetic Euler pole; PLon: pole longitude; PLat: pole latitude; Θ95 represents the Fisher angular deviation 
wherein 95% of the estimated path positions lie within that angle of the mean path position assuming a Fisher distribution.

Table 2 
Bayesian Paleomagnetic Euler Pole Apparent Polar Wander Path for Cenozoic Australia
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be a fruitful future direction to use for comparisons between reference frames. Overall, the analysis highlights a 
broad agreement in the interpretation of kinematics that results from inversion of the Cenozoic paleomagnetic 
poles for Australia and that which results from seafloor-based plate motion models.

7.  Application to the Keweenawan Track
An impetus for the development of this Bayesian paleomagnetic Euler pole inversion method was to constrain 
the absolute rates of plate motion associated with the ca. 1,109 to 1,070 Ma Keweenawan Track of paleomagnetic 
poles from the Proterozoic continent of Laurentia (Halls & Pesonen, 1982; Swanson-Hysell et al., 2009, 2019). 
These poles are associated with the rapid motion of Laurentia toward the equator leading up to the Grenvillian 
orogeny and the assembly of the supercontinent Rodinia (Swanson-Hysell, 2021). While previous approaches 
had established estimates for the rate of latitudinal motion associated with the Keweenawan Track (Davis & 
Green, 1997; Swanson-Hysell et al., 2014), this Bayesian inversion method was implemented in Swanson-Hysell 
et al. (2019) in order to constrain absolute rates (without providing the level of detail on the methodology i.e., 
elucidated in the present contribution). In addition to our goals of constraining absolute rates, this approach 
was particularly appropriate for the Keweenawan Track as it includes poles with quite disparate precision on 
their age constraints as some are constrained tightly by high-precision U-Pb dates (e.g., Fairchild et al., 2017) 
while others have looser stratigraphic constraints. A technical note related to the analysis in Swanson-Hysell 
et  al.  (2019) is that it used a version of the code written in PyMC2 (Patil et  al.  (2010); https://github.com/
ian-r-rose/mcplates). The PyMC project has migrated to PyMC3 (now known simply as PyMC) which is a total 
rewrite of the module (Salvatier et al., 2016) and necessitated our code to refactored into its present PyMC 
version (https://github.com/Swanson-Hysell-Group/Bayesian_PEP_inversion). These two versions of the code 
apply the same methodology and recover very similar solutions. One change that we adopted in this study is that 

Figure 7.  Summary of the apparent polar wander path (APWP) for Australia in the Cenozoic based on a two plate tectonic 
Euler poles Bayesian inversion to the paleomagnetic poles (Figure 6). The Fisher angular deviation (θ95) of the positions 
along the inverted paths are shown in 5 Myr intervals from 60 to 0 Ma (Table 2). Also shown are the pole positions implied 
by the continuous reconstructions of Müller et al. (2016) and Torsvik and Cocks (2017) which vary in terms of their reference 
frames as discussed in the text. The new inverted APWP matches better in terms of pole position latitude with the global plate 
reconstruction model of Müller et al. (2016), but better in terms of pole position longitude with the model of Torsvik and 
Cocks (2017).
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we applied inclination shallowing corrections to the sedimentary paleomagnetic poles within the Keweenawan 
Track (i.e., the Nonesuch Formation and lower Freda Formation poles of Henry et al. (1977)) given how wide-
spread inclination shallowing is for remanence held by detrital hematite. While more research is needed on 
these sedimentary rocks to quantify the degree of inclination shallowing, we take the approach of Domeier 
et al. (2012) in utilizing an assumed flattening factor of 0.6 given that sample-level data are not available. A 
ripe direction for future work would be to adopt a probabilistic framework for inclination shallowing correction 
rather than an assigned single value.

For all Keweenawan Track inversions, we use weakly informative Watson girdle distributions with κW = −0.1 for 
the prior distribution of Euler poles, and use an exponential distribution with λ = 2.5 for the prior distribution 
of Euler rotation rates (based on the analysis shown in Figure 3). Paleomagnetic Euler pole inversions to the 
Keweenawan Track are shown in Figures 8 and 9. The posterior distribution of the Euler pole positions are shown 
along with a sampling of pole positions generated from the posterior Euler parameters and pole ages which are 
plotted over the paleomagnetic poles (as compiled in Swanson-Hysell et al. (2019)). The prior distributions for 
the ages of the poles are shown in Figure 9b. The prior probabilities assigned to the ages illustrate the variable 
age uncertainties associated with the paleomagnetic poles in the Keweenawan Track some of which are tightly 
constrained by radiometric dates and others which have looser age constraints (Swanson-Hysell et al., 2019). 
The posterior distribution of the angular rotation rates for Laurentia resulting from the inversions are shown as 
angular velocities along with their 95% credible intervals (Figures 8 and 9). To compare models with varying 
combinations of Euler poles and assess whether the results of the inversions represent good fits for the observed 
paleomagnetic poles, we calculate the distribution of the natural log of the likelihood for the paleomagnetic 
poles generated from the posterior Euler parameters and pole ages based on the observed paleomagnetic poles. A 
summary of the posterior likelihood distributions is shown in Figure 8b.

Applying a single paleomagnetic Euler pole inversion to the entirety of the Keweenawan Track results in a median 
rate of 3.1°/Myr with a 95% credible interval of 2.7–3.6°/Myr (Figure 8). In the literature, the Keweenawan Track 
has variably be interpreted as being the result of fast differential plate motion (e.g., Davis & Green, 1997) or as 
the result of true polar wander (e.g., Evans, 2003). True polar wander results in rotation of the entire silicate Earth 
about an Euler pole 90° from the path and has the potential to progress at rapid rates (Rose & Buffett, 2017). Over-
all, true polar wander is a difficult signal to disentangle from plate motions, since any given APWP can be the 
result of true polar wander, plate tectonics, or some combination of the two. However, given the nature of a true 
polar wander rotation, an Euler pole that describes true polar wander will be 90° from the spin axis such that the 
Euler pole for a true polar wander event will be 90° from the paleomagnetic poles. Therefore, the extent to which 
true polar wander could explain motion of the Keweenawan Track can be evaluated by constraining the location 
of the true polar wander Euler pole to be within a great circle 90° from the path. This constraint is imposed in the 
inversion by using a restrictive Watson girdle distribution. As shown in Swanson-Hysell et al. (2019), a single 
true polar wander rotation is a poor fit to the path given its curvature. The posterior true polar wander rotation 
parameters results in a path that deviates from the observed paleomagnetic poles, as is illustrated by the resam-
pled poles for younger ages falling outside of the A95 uncertainty ellipses of the observed paleomagnetic poles in 
Figure 8a. As a result, the posterior log likelihood values for the true polar wander model are much smaller than 
those for the one Euler pole model (Figure 8b).

The pole path could be the result of a combination of true polar wander and differential plate motion. This 
scenario can be explored through models that invert for a true polar wander Euler pole as well as differential 
plate tectonic Euler poles. The model with both a plate tectonic Euler pole rotation and a concurrent true polar 
wander rotation partitions the motion between both with significantly faster plate tectonic motion (Figure 9a). 
In addition, because the true polar wander involves the rotation of the solid Earth with respect to the spin axis 
(rotating both the plate an its associated Euler pole), its results in more uncertainty associated with the location 
of the plate tectonic Euler pole, broadening the posterior Euler pole distribution (Figure 9a). Although such a 
rotation is possible, adding a true polar wander component to either the one or two plate tectonic Euler pole 
inversions does not significantly improve fits to the observed paleomagnetic poles (Figure 8b). Overall, forward 
models involving small circle Euler rotations yield better fits to the observed paleomagnetic data than the model 
that considers only true polar wander great circle rotation (Figure 8). These results indicate that there was rapid 
plate motion at the time which is associated with subduction that led to the closure of the Unimos Ocean leading 
up to collisional Grenvillian orogenesis and the associated formation of the supercontinent Rodinia (Hynes & 
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Figure 8.  (a) Bayesian paleomagnetic Euler pole inversions of the Keweenawan Track for one plate tectonic Euler pole 
and for one true polar wander Euler pole. The Euler pole locations and representative predicted pole positions associated 
with posterior Euler parameters and pole ages are shown with the observed paleomagnetic poles on the left orthographic 
projections. Details on the individual paleomagnetic poles used in the analysis can be found in Swanson-Hysell et al. (2019). 
The distribution of angular rotation rates resulting from the inversions are shown in the histograms on the right. (b) Posterior 
likelihood distributions for all models used to invert for the Keweenawan Track. The log likelihood values are calculated by 
taking the natural log of Equation 20 and show the true polar wander (TPW) inversion to have a quite low likelihood relative 
to the other inversions.
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Figure 9.  (a) Bayesian paleomagnetic Euler pole inversion of the Keweenawan Track for two plate tectonic Euler poles with a change point and for one Euler pole with 
concurrent true polar wander. The Euler pole locations, representative predicted pole positions, and the distribution of angular rotation rates associated with each model 
are shown in the same way as in Figure 8. For the plate tectonic Euler pole, the position (in blue density) is shown relative to the start position of the path. The true 
polar wander rotation will progressively rotate these plate tectonic Euler poles such that the position will change through time. The log likelihood of these models are 
compared with others in Figure 8b. (b) Top: prior age distributions for poles used in the forward model. Bottom: posterior pole age distributions resulting from the two 
plate tectonic Euler pole Markov chain Monte Carlo inversion.
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Rivers, 2010; Swanson-Hysell et  al., 2022). In comparison with models that involve one Euler pole rotation, 
the two Euler pole inversion results in an improvement in fit as can be visualized by the modeled pole positions 
shown in Figure  9a and by the calculated posterior likelihood distributions for the paleomagnetic pole posi-
tions (Figure 8b). The two Euler pole inversion results in a ca. 1,097 Ma changepoint age (with a 95% credible 
interval from 1,098.8 to 1,095.4 Ma) with rates that slow from ∼3.1°/Myr to ∼1.8°/Myr after the changepoint. 
This change could be associated with initial onset of collisional Grenvillian orogenesis along Laurentia's margin 
(Swanson-Hysell et al., 2019).

The results of this Bayesian Euler pole inversion method can not only provide insights into geodynamic processes, 
but also provide geochronologic estimates on rock units that have poor or none radiometric age constraints. As 
our knowledge of paleomagnetic pole ages and their uncertainties are incorporated into the inversions, the more 
informative prior distributions that we implement for poles that have well-constrained radiometric dates (such as 
the normal distributions for many igneous units of the Keweenawan Track) can act as anchor points and result in 
more tightly constrained posterior distributions for ages of other poles that have less informative priors (such as 
the uniform distributions for some igneous and the sedimentary poles of the Keweenawan Track). As is illustrated 
in Figure 9b, the poles whose ages could only be bracketed as uniform distributions in the prior end up having 
posterior age distributions with more constrained credible intervals. In this example, these ages estimated through 
paleomagnetic Euler pole inversion model give insight into the chronology of magmatism and basin development 
within the North American Midcontinent Rift.

8.  Challenges and Opportunities in the Application of Paleomagnetic Euler Pole 
Analysis
While the examples in this study highlight insights that can be gained through applying paleomagnetic Euler 
pole analysis to segments of apparent polar wander paths, challenges remain in its broad application. One set of 
challenges relates to the resolving power of the method. For slow rates of motion, the position of inverted Euler 
poles are uncertain and it is difficult to resolve the timing of changepoints with confidence. However, this issue 
is more related to the precision of available constraints and is the case regardless of method. Of note is that the 
spread between resulting paths is much less than the spread of the posterior Euler pole position (as in the older 
Euler pole rotation in the Australia application; Figure 6). Determining the number of change points to implement 
in an inversion is an additional challenge, and one that is also more difficult for slow motions or uncertain data. 
This issue is addressed theoretically in Gallo et al. (2022) who apply a frequentist approach to paleomagnetic 
Euler pole inversion and propose a graphical approach to evaluate for the optimal number of inverted Euler poles. 
The extension of such an approach beyond ideal synthetic data to noisier suites of paleomagnetic data as well as 
integration with our Bayesian inversion approach could prove fruitful.

It could be interpreted as an advantage of paleomagnetic Euler pole analysis that it utilizes a physical model of 
plate motions to inform an APWP shape that fits with our knowledge of plate motions. However, uncertainty 
remains regarding underlying assumptions including that Euler pole positions and associated plate motions are 
relatively stable over millions of years. A complexity here is that while data constrain the relative motion between 
plates to be relatively constant (e.g., Müller et al. (2016)), the motion of a plate relative to the spin axis can be the 
combined effect of multiple Euler poles in a plate circuit as well as true polar wander. Furthermore, the method 
also assumes that the timescale over which Euler pole positions themselves migrate are relatively rapid such that 
they can be approximated by instantaneous changepoints. Evaluating the validity of these assumptions is an area 
ripe for future research. There is the potential to apply paleomagnetic Euler pole inversion itself to gain insight 
into these uncertainties.

An additional opportunity comes from the method giving posterior distributions for pole ages. There is a long 
history of paleomagnetists comparing undated (or poorly dated) paleomagnetic poles with APWPs to gain insight 
on their age (Hnatyshin & Kravchinsky, 2014; McCabe et al., 1984). These methods typically rely on comparison 
between designated pole pairs or consider the reference APWP to not have uncertainty. In the Bayesian paleo-
magnetic Euler pole inversion method developed here, undated poles (Figure 5) or poorly dated poles (Figure 9) 
can be incorporated into the analysis with the resulting posterior distribution age distribution providing an esti-
mate of the age of magnetization including uncertainty.
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9.  Conclusions
We have extended the paleomagnetic Euler pole analysis of Gordon et al. (1984) by placing it within a Bayes-
ian framework. As a Bayesian inverse problem, MCMC numerical methods can be used to obtain estimates of 
Euler pole positions and rates as constrained by paleomagnetic poles. Regularization of the inversions is not 
accomplished by smoothing parameters, but can instead be accomplished through prior probability distributions 
for the Euler pole parameters, which have clear physical interpretations. The approach enables uncertainties on 
both the positions and ages of paleomagnetic poles to be incorporated into the analysis. Multiple Euler poles can 
be included with the timing of changepoints between them being solved as part of the inversion. An advantage 
of this approach is that the paleomagnetic Euler poles provide an estimate for the total plate velocity including 
both latitudinal and relative longitudinal motion. The resulting posterior distributions from the inversions provide 
uncertainties for the model parameters–including estimates of plate velocity.

Data Availability Statement
The code implementing the analysis and developing the visualizations of this study are documented within Jupy-
ter notebooks (Kluyver et  al.,  2016) that are available on Github (https://github.com/Swanson-Hysell-Group/
Bayesian_PEP_inversion) and Zenodo (https://doi.org/10.5281/zenodo.7087844). These notebooks utilize the 
functions within the Bayesian_pep library within the repository and data that are within the repository as well. 
The computational environment used for running these notebooks and conducting the analysis can be reproduced 
using the environment.yml file within the repository. Instructions associated with recreating this computational 
environment can be found in the README.md file within the repository. MCMC analysis was performed using 
PyMC (Salvatier et al., 2016). Additional analysis was performed using the Python packages NumPy (Harris 
et al., 2020), Scipy (Virtanen et al., 2020), and PmagPy (Tauxe et al., 2016). Figures were created using Matplot-
lib (Hunter, 2007) and Cartopy (Met Office, 2010–2015).
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